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Simulation of shear bands using polygonal particles

Abstract The choice of particle shape representation is
critical in the accuracy of the simulations of real granular
materials. Here we present a method to simulate particle
shape using polygonal particles. The method reproduces
shear bands using different boundary conditions: con-
fining walls, floppy boundaries and periodic boundary
conditions.
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1 Introduction

One of the most remarkable features in granular media
is the formation of shear bands: For large shear defor-
mation strain is not homogeneously distributed but ap-
pears in a localized fashion along narrow interfaces be-
tween two unstrained bodies. Geological fault zones is
a typical example of shear bands. They consist of lay-
ers of fragmented rocks, which are squeezed by the slow
relative movement of the tectonic plates. The dynamics
of the granular materials within such layers is thought
to control earthquake instability, and thus understand-
ing its properties is central to an understanding of the
earthquake process [1].

In laboratory experiments shear bands turn out to
be very sensitive the the boundary conditions. In Cou-
ette shear cells they are localized near the inner cylin-
der [2]. In wall-confined samples, shear bands emerge
near any irregularity of the walls, They reflect when
they reach a rigid boundary, and refract when enter to
a granular medium with different bulk properties [3].
A recent review of experiments on strain localization
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states that “depending on the boundary conditions vari-
ous patterns of localization were observed, including par-
allel and crossing shear bands, as well as temporary, or
‘non-persistent’ modes of localization, that is,localized re-
gions which form during the test and eventually ’disap-
pear’”. [4]

Granular dynamics simulations has been used to model
shear bands using different boundary conditions [5; 6;
7]. They provide detailed micromechanical data, which
are not available in conventional laboratory experiments.
Most models use disks or spheres to represent the par-
ticle shape. The simplicity of their geometry reduce the
computer time, and allows to use foolproof contact force
laws in the calculation of the interactions. However, these
models does not take into account the diversity of shapes
of the grains in realistic granular materials.

This paper presents a detailed review of the method
that has been used to model granular materials using
polygonal particles. We discuss also different boundary
conditions leading to shear band formation. In Section 2
we introduce the Voronoi tessellation used to generate
polygonal packings. The contact force model is presented
in Section 3. The contact detection and speed up the nu-
merical simulations is presented in Section 4. In Section
5 the implementation of boundary conditions and their
implications in shear band formation is discussed.

2 Generation of polygons

The polygons representing the particles in this model are
generated by using the method of Voronoi tessellation:
First, a regular square lattice of side ¢ is created. Next,
we set a random point in a square of side length a in-
side the cells of the rectangular grid. Then, each polygon
is constructed, assigning to each point that part of the
plane that is nearer to it than to any other point. The
details of the construction of the Voronoi cells can be
found in the literature [8; 9].

Fig. 1 shows random tessellations for different values
of a. In all the cases, the mean number of edges is six
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Fig. 1 Voronoi construction used to generate the convex
polygons. The dots indicate the point used to the tessella-
tion. Periodic boundary conditions were used. Four different
values of a are chosen: 0.5¢, ¢£,2¢ and 20/.

[9]. The tessellation with a < ¢ corresponds to the so-
called vectorizable random lattices [8]. They are Voronoi
constructions with low disorder, a narrow distribution
of areas and a certain anisotropy when a < ¢ as shown
in part (a) of Fig. 1. This anisotropy is reflected in the
fact that the orientational distribution of the edges is not
uniform. The tessellations with a > ¢ lead to isotropic
Voronoi tessellations with a wide, asymmetric distribu-
tions of areas of the polygons (see parts (b) and (c) of
Fig. 1). In particular, the limit a > ¢ corresponds to the
so-called Poisson tessellations [8; 9].

Voronoi tessellations with a = ¢ will be used in this
work. In this case, the orientational distribution of edges
is isotropic, and the diversity of areas of polygons is sym-
metric around ¢2 [10]. These two properties are observed
in realistic granular materials [11; 12]. The probabilis-
tic distribution of areas follows approximately a Gaus-
sian distribution with a variance of 0.36¢2. the number
of edges of the polygons is distributed between 4 and 8
for 98.7% of the polygons.

Initially, The polygonal particles fill the plane with
no overlaps and no gaps. This kind of plain tessellation
resembles in some aspects the geometry of fragmented
rocks, dry masonry walls or marble [13]. It should rec-
ognized that this model is an oversimplification of such
materials. However, this model allow us to investigate
granular media in the extreme case of an initial space
filling packings of angular particles, and compare the re-
sults with the other extreme case of perfect spherical par-

ticles with large initial porosity [13]. A method to gen-
erate packing fractions lower than one will be explained
in Sec. 5.1.

3 Contact Forces

Defining contact forces between polygonal particles is far
to be a trivial task. A usual approach is to assume that
the polygons cannot be deformed, but they can over-
lap when they are pressed against each other. Then the
force is calculated as a function of this overlap [14; 15].
For the calculation of the contact force we require two
well defined quantities: contact normal vector and over-
lapping length. The first one is the vector perpendicular
to the contact surface. The latter one is a measure the
interpenetration between the two particles . It is desir-
able that these two quantities change continuously with
time. Time discontinuities in the force eventually lead to
numerical problems in the integration of the equation of
motions, such as numerical generation of energy in the
granular system.

The contact normal vector is taken perpendicular to
the so-called contact line. This line represents the flat-
tened contact surface between the two bodies in con-
tact. We calculate the contact line from the intersection
points of the overlapping polygons. In most cases, we
have two intersection points, as shown in the left of Fig.
2. In such a case, the contact line is defined by the vec-
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tor C = C1C5 connecting these two intersection points.
In some pathological cases, the intersection of the poly-
gons leads to four or six points. In these cases, we de-
fine the contact line by the vector C = CTC’; + m
or C = C1C5 4+ C3Cy 4+ C5C%, respectively. This choice
guarantees a continuous change of the contact line, and
therefore of the contact normal vector, during the evolu-
tion of the contact.

The contact force is separated as f¢ = ¢ + f¥, where
f¢ and f¥ are the elastic and viscous contribution. The
elastic part of the contact force is decomposed as f¢ =
fenc + fete, where f¢ is the normal elastic force and f?
is the frictional force . The calculation of these compo-
nents is explained below. The unit tangential vector is
defined as t© = C/|C|, and the normal unit vector n¢
is taken perpendicular to C. The point of application of
the contact force is taken as the center of mass of the
overlapping polygon.

As opposed to the Hertz theory for round contacts,
there is no exact way to calculate the normal force be-
tween interacting polygons. Tillemans and Herrmann [14]
propose to to calculate this force as f¢ = —k,A/L.
where k,, is the normal stiffness, A is the overlapping area
and L. is a characteristic length of the polygon pair. Our
choice of L. is 1/2(1/R;+1/R;) where R; and R; are the
radii of the circles of the same area as the polygons. This
normalization is necessary to be consistent in the units




of force. Since the overlapping area changes continuously
in time, the normal elastic force is continuous too.

The frictional force is calculated using an variation
of the Cundall-Strack method [16]: An elastic force ff =
—k¢ Az proportional to the elastic displacement is in-
cluded at each contact. k; is the tangential stiffness. In
order to satisfy the sliding condition |ff| < pfg, The
elastic displacement Ax; is calculated as follows: When
two particles come into contact we set Ax; = 0. Then,
at each time ¢, we guess a new value for the tangential
elastic deformation as:

Azl (t) = Axy(t — At) + v At, (1)

where vf is the tangential component of the relative ve-
locity at the contact:

VC:Vi—Vj—l—Wini—Wlej.

(2)

v; is the linear velocity and w; is the angular velocity of
the particles in contact. 1; is the so-called branch vector,
which connects the center of mass of the particle to the
center of mass of the overlapping polygon The predicted
value of elastic deformation is corrected to satisfy the
Coulomb sliding condition:

phkn Ay, (1)

t

Ay(t) = sign( At (t)) min( Jaz. @)

This frictional force reproduces the main features of
the plastic deformation of soils, such as the plastic flow-
rule [13], the stick-slip fluctuations [17; 18] and ratch-
eting [19]. The main drawback of this method is that
it introduces an time integration error of O(At?). Im-
provement of the calculations of such frictional force will
require higher order integration terms in Eq. 1.

Finally, we introduce a viscous force (Eq. 4), which
is necessary to maintain the numerical stability of the
method and to obtain a quick convergence to the equi-
librium configuration.

F = —miy, - V5 -2 =5 - v§ - ),

(4)

where m = (1/m; + 1/m;)~ ! is the effective mass of
the two particles in contact, 7, and v, are the damp-
ing coeflicients. These forces introduce time dependent
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Fig. 2 Intersection points C; before (left) and after the for-
mation of a pathological contact (right). The vector denotes
the contact line. ¢ represents the time step.

effects during the loading. However, these effects can be
arbitrarily reduced by increasing the loading time, as
corresponds to the quasistatic approximation.

The transmitted torque between two polygons in con-
tact is calculated as 7 = £ x f. Since the point of appli-
cation of the force is not collinear with the centers of
masses of the interacting polygons, there is a contribu-
tion of the torque from both components of the contact
force. This makes an important difference with respect
to the interaction between disks or spheres: Polygons can
transmit torques even in absence of frictional forces.

The evolution of the position x; and the orientation
; of the polygon i is governed by the equations of mo-
tion:

c b
Lii =Y 05 xfF+> 40 x f).
c b

Here m; and I; are the mass and moment of inertia of
the polygon. The first sum goes over all those particles
in contact with this polygon; the second one over all the
forces applied on the boundary of the assembly. We use
a fifth-order Gear predictor-corrector method for solving
the equation of motion [20].

()

4 Neighbor search

The efficiency of the granular dynamics simulation is
mainly determined by the method of contact detection. If
the system consist of n particles, the required calculation
operations for contact detection in each time step usu-
ally be O(n?). Special neighbor search algorithms such
as Verlet lists and Link Cell Algorithms [21; 20] have
been proposed to reduce the computational effort.

Our method combines Verlet Lists with a Link Cell
algorithm to determine the list of particles in potential
contact using O(n) calculations. The Verlet list is noth-
ing more than the list of pair particles which are relative
close each other. We attach to each particle a halo of ra-
dius R + 6, where R is the radius of a sphere containing
the particle, and ¢ is the so-called Verlet distance. We
call two particles neighbors if their halos overlap.

We use a Link Cell algorithm to allows a rapid calcu-
lation of this Verlet list: First, the space occupied by the
particles is divided in cells of side D + §, where D is the
maximal diameter of the polygons. Then the Link Cell
List is defined as the list of particles hosted in each cell.
Finally, the candidates of neighbors for each particle are
searched only in the cell occupied by this particle, and
its eight neighbor cells.

Of course, neighbor list do not need to be updated
each time step. The list is kept constant until the max-
imal displacement of the particles after the last update



is larger than §. Increasing the value of § makes updat-
ing of the list less frequent, but it increases the size of
this list, and hence, the ammount of memory used in the
simulation. Therefore, the parameter 6 must be chosen
by making a compromise between the storage (size of
the Vertex List) and the compute time (frequency of list
updates).

There are many parameters in the molecular dynam-
ics algorithm. The parameters k,,, k:/k, and p can be
considered as material parameters. They determine the
constitutive response of the system in the quasistatic
limit, so they should be adjusted to the experimental
data [13]. we chose here k,, = 1.6 x 105N/m, k; = 0.33k,,
and g = 0.5. The other parameters should be carefully
chosen to preserve numerical stability, optimize the time
of calculation and satisfy the quasistatic approximation.

5 Boundary Conditions

The presence of shear bands is very sensitive to the con-
ditions imposed on the boundary of the granular assem-
bly. In our simulations we have investigated three dif-
ferent boundary conditions. The first one corresponds
to the confining walls. In the second case we mimic the
experimental tests under plane strain conditions: First,
a confining pressure is applied to the sample through
a flexible membrane. Then, two horizontal walls at the
top and bottom of the packing are used to apply ver-
tical loading with constant velocity. Finally, we model
infinitely large shear cells by introducing the periodic
boundary condition along the horizontal direction.

5.1 Walls as boundaries

Usually, the granular assemblies are compacted and loaded
within a set of confining walls. These walls act as bound-
ary conditions, and can be moved by specifying their ve-
locity or the force applied on them. The response of the
walls can be used to calculate the global stress and strain
of the assembly.

The interaction of the polygons with the walls is mod-
eled here by using a simple visco-elastic force. First, we
allow the polygons to penetrate the walls. Then, for each
vertex of the polygon « inside of the walls we include a
force

f' = —k,Az,n — 'ybmavb,

(6)

where Ax,, is the penetration length of the vertex, n is
the unit normal vector to the wall, and v® is the relative
velocity of the vertex with respect to the wall.
Confining walls can be used to generate samples with
different void ratios. Starting from a very loose packing,
the sample is compacted by applying a centripetal grav-
itational field to the particles and on the walls, oriented
to the center of mass of the assembly. Then the sample

is subjected to an isotropic compression until the desired
confining pressure is reached. In order to generate dense
samples, the interparticle friction is set to zero during
the construction. The loose samples are created taking
damping coefficients 100 times greater than those used
in the test stage. Samples with void ratio ranged from
0.128 to 0.271 can be achieved with this method [17].

We have investigated shear deformation of granular
samples with different initial void ratios [17]. Shear bands
are observed in dense samples, whereas they seems to be
absent in loose ones. they share some common proper-
ties of the shear bands in real granular materials, such as
their characteristic reflection when they reach the bound-
ary wall. Shear band orientation lies between the Roscoe
angle and Mohr-Coulomb solution, as in most of the ex-
perimental data.

For large shear deformations all samples reaches the
critical state, which is independent on their initial den-
sity. Once the samples reaches this state, they deform at
constant void ratio and coordination number [17]. The
evolution of the deviatoric stress exhibits fluctuations
around the residual strength. Abrupt reduction of the
stress results from the collapse of force chains, as shown
the Fig.3. collapse of force chains makes the sample to
approach and retreats unstable stages. A similar behav-
ior is observed in glass bead samples [22] and packings
of glass spheres [23]. Experimental biaxial tests show ev-
idence of dynamic instabilities at the critical state [24].
Erratic slip-stick motion at the critical state is interest-
ing, owing to its potential analogy with earthquake dy-
namics [18].

5.2 Floppy boundary

The method of floppy boundary is introduced to model
the typical biaxial test used to investigate the strain lo-
calization [11]. In this test, a prismatic granular sample,
surrounded by a latex membrane, is placed between two
fixed walls to create plane strain condition. Then the
sample is subjected to axial loading, superimposed by a
confining pressure applied on the membrane.

We are to discuss how the latex membrane can be
modeled. One way would be to apply a perpendicular
force on each edge of the polygons belonging to the ex-
ternal contour of the sample. This method works only
in the case of dense polygonal samples. For loose sam-
ples the force will act on all the fjords of the boundary.
This produces an uncontrollable growth of roughness of
the boundary that with time, end up destroying the con-
tact network of the sample. With a latex membrane this
cannot happen because the bending stiffness of the mem-
brane does not allow the pressure to penetrate in all the
fjords of the sample. To model such a membrane, we will
introduce a criterion which restricts the boundary points
that are subjected to the external stress.

First we describe the method used to identify the
boundary of the assembly. This boundary corresponds
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Fig. 3 Stress drops (a) and their correlation with collapse
of force chains: force network just before the stress drop (b)
and right after it (c). The width of the lines is proportional
to the magnitude of the contact force. [17]

to a polygon, that is constructed as follows: The lowest
vertex p from all the polygons of the sample is chosen
as the first point of the boundary list b;. In Fig. 4 P
is the polygon that contains p, and ¢ € PN Q is the
first intersection point between the polygons P and @ in
counterclockwise orientation with respect to p. Starting
from p, the vertices of P in counterclockwise orientation
are included in the boundary list until q is reached. Next,
q is included in the boundary list. Then, the vertices of @
between ¢ and the next intersection point 7 € QMR in the
counterclockwise orientation are included in the list. The
same procedure is applied until one surrounds the sample
and reaches the lowest vertex p again. This is a very
fast algorithm, because it uses of the intersection points
between the polygons, which are previously calculated to
obtain the contact force in each time step.

The next step is to determine the points of the bound-
ary which are in contact with the floppy boundary. Let’s
define {b;} the set of points of the boundary and {m;}
the set of boundary points that are in contact with the
membrane. They are selected using the following two
stepsalgorithm: First, The set {m;} is initialized with
the vertices of the smallest convex polygon that encloses
the boundary (see Fig. 5). The lowest point of the bound-
ary is selected as the first vertex of the polygon m; = b;.
The second one mo i the boundary point b; that min-
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imizes the angle Z(b1b;) with respect to the horizontal.

Fig. 4 Sketch of the algorithm used to find the boundary of
the polygonal packing.

The third one mg is the boundary point b; such that
the angle Z(m,m) is minimal. The algorithm is
recursively applied until the lowest vertex m; is reached
again. The final result is a convex polygon containning
the sample, as shown part (a) of the Fig. 5.

In the second step of the algorithm, the points of the
boundary are iteratively included in the list {m;} us-
ing the bending criterion proposed by Astrgm [6]. For
each pair of consecutive vertices of the membrane m; =
b; and m;11 = b; we choose that point from the sub-
set {br}i<k<; which maximizes the bending angle 6, =
Z(Z?b;, lTb;) This point is included in the list whenever
0y > 0:p,. Here 0y, is a threshold angle for bending. This
algorithm is repeatedly applied until there are no more
points satisfying the bending condition. The final result
gives a set of segments {m;mi;; } lying on the boundary
of the sample as shown in Fig. 5.

In order to apply stress at the boundary, the seg-
ments of the membrane are divided into two groups: A-
type segments are those that coincide with an edge of a
boundary polygon; B-type segments connect the vertices
of two different boundary polygons. On each segment of
the membrane T = Azx1% + Axods, we apply a force

o = —01Az9%1 + 02 A1 20 (7)

Here %, and s are the unit vectors of the Carte-
sian coordinate system. o; and oy are the components
of the stress we want to apply on the sample. This force
is transmitted to the polygons in contact with it. If the
segment is A-type, this force is applied at its midpoint;
if the segment is B-type, half of the force is applied at
each one of the vertices connected by this segment. An
additional damping force f% = —y,m;v® is included to
reduce the acoustic waves produced during loading. Here
vy is the coefficient of viscosity of the floppy boundary,
and m; is the mass of the polygon and v® the velocity of
the polygon.

This boundary condition has been used in to simulate
biaxial tests. First, a confining pressure is applied on the



Fig. 5 Floppy boundary obtained with a maximal bending
angle 0y, = m, 3w /4, w/2 and 7 /4, the first one corresponds
to the minimum convex polygon that encloses the sample.

sample through the floppy boundary. Then two horizon-
tal walls at the top and bottom of the packing are used
to apply vertical loading with constant velocity. We have
reproduced very clear shear bands whose orientation lies
between the Mohr-Coulomb and Roscoe Solution, which
defines with very good agreement the limit for the angles
found in the experiments [13]. The characteristic width
of the shear of the band can be associated to the prop-
agation of stress inside the grains. The stress tensor at
each particle P is given by 05 = %Z o JiE5 where a is
the area of the polygon, f{ is the contact force and /5 is
the branch vector, connecting the center of mass of the
polygon to the point of application of the contact force.
The sum goes over all the contacts of the particle. The
principal stress direction at each grain is represented in
Fig. 6 by a cross. The length of the lines represents how
large the components are. At the beginning of the load-
ing, the major principal stress is almost parallel to the
load direction, forming column-like structures which are
called force chains. At failure these chains start buckling.
The buckled chains gradually creates force loops which
concentrate as shear bands. The size of such loops corre-
sponds to the shear band width, and it depends mainly
on the grain diameter. Buckling of each force chain in-
volves rolling between the grains belonging to it, a fea-
ture that has been used to provide a theoretical expla-
nation of the finite width of shear bands [25].

There are still some challenges in the modeling of
such floppy boundary conditions: For small values of 6y,
and loose samples the floppy boundary penetrates too
much in the fjords, producing some instabilities in the
boundary polygons. This instability is reflected in large
displacements on boundary polygons for small loadings,
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Fig. 6 Top left: Principal stress directions of the grains after
failure (e1 = 0.07); the confining pressure is po = 0.001k,,.
Top right: Detail of the stress in the shear band.

eventually leading to their detachment. For dense sam-
ples the method works fine, as it has proved in the cal-
culation the incremental stress-strain relation of isolated
representative element volumes [26].

Further complications of this method arise for values
of 4, close to m: When the sample is kept at constant
isotropic pressure, the assembly cannot reach an equi-
librium configuration. We have observed that in these
cases the floppy boundary flips periodically to different
configurations, giving rise to spurious oscillations in the
assembly. A reason for this numerical problem could be
the fact that this method leads to boundary forces which
do not change continuously with time. In these cases, the
numerical method used to solve the equations of motion
cannot guarantee stability and convergence of the nu-
merical solution.

5.3 Periodic Boundary Conditions

The periodic boundary technique is a very useful tool in
granular dynamics simulations. The main feature is the
ability to remove the surface effects, which are presented
in any finite sample. It is also a way to make a simulation
consisting of only a few hundred particles behave as if it
was infinite in size.

We simulate extended shear zones using periodic bound-

ary condition in the horizontal direction. The particles
are contained in a space domain of length L. When a
particle leaves the left (right) side of this domain, it reen-
ters from the opposite site. In each time step, particles
in the left (right) side of the domain can interact with
the particles in the right (left) side. This is implemented
by wrapping the link cell in Section 4 as a doughnut, so
that particles in the left (right) cells of the link cell can be
neighbor of the particles in the right (left) ones. If a pair
of particles are neighbors through the periodic boundary
condition, their interaction is calculated in three steps:



(1) shift the left particle by L; (2) calculate the contact
force; and (3) shift the particle back.

Figure 7 shows four different stages of the shear band
formation using periodic boundary conditions. The top
and bottom layers of the sample have fixed boundary
conditions. A constant confining normal force is imposed

between these layer. The top and bottom layers are sheared

in opposite direction with a fixed relative velocity v,.
The particles in these layers are not allowed to rotate or
move against each other. To allow volumetric changes of
the sample, the top boundary is free to move in verti-
cal direction. A precursor of the shear band formation is
the emergence of anisotropy of the contact network, as
shown part (b) of the Figure 7. For large shear defor-
mation shear bands of 6 — 8 particle diameters arise for
large shear deformation.

Shear cells with periodic boundary conditions has
been used to investigate fault gouges [14; 27]. There is
a growing interest in the investigation of the low dis-
sipation on shear zones, which can potentially explain
the long standing Heat Flow Paradox [18]. A detailed
investigation of the transition from the stick to slip mo-
tion would also contribute to the understanding of earth-
quake nucleation. The time fluctuations in shear bands
have also shown some similarities with the seismic ac-
tivity in fault zones [7]. In should be however mentioned
that the simulations of the acoustic emission after a col-
lapse event does not behave similar to the elastic waves
in real earthquakes. In the Earth seismic waves are able

Fig. 7 Different stages of shear band formation using a
polygonal packing with initially zero porosity. The lines rep-
resent the intensity of the normal force. Snapshots are taken
for shear deformation of 0%, 0.05%, 0.1% and 0.2% the length
of the sample.

to travel through the plates. However, in the simulations
accoustic waves are trapped by the periodic boundary
condition and the reflective effect of the free boundaries.
The development of transparent (or absorbing) bound-
ary condition will be important to future application on
seismic activity and wave propagation.

6 Concluding remarks

We presented a discrete model of polygonal particles to
simulate shear bands. Under different boundary condi-
tions, dense samples develop shear bands of 6 — 8 parti-
cle diameters width. Loose samples do not show clearly
shear bands. The dynamics of shear bands are character-
ized by building and collapse of force chains, which lead
to stress fluctuations similar to the seismic activity in
fault zones. There are several challenges in the modeling
of more realistic fault zones:

(1) The interaction between polygons using the over-
lapping area is difficult to generalize in 3D, because the
overlap between polyhedrons is much more difficult to
evaluate.

(2) The elastic force used in this work does not belong
from a potential, so that this model does not provide an
equation for energy balance. In the investigation of fault
zones, the energy balance is required to determine the
energy budget in earthquakes.

(3) Earthquakes result from the combined effect of
frictional instabilities and rock fragmentation. Thus, the
modeling of realistic fault zones must include grain frag-
mentation.

To overcome the first two issues we are implementing
a novel technique based on spherosimplexes [28]. This
method provide an energy balance equations and a wide
range of particle shape representations, including non-
convex particles and tunable grain roundness. Inexpen-
sive simulations of shear cells with grain crushing can
be implemented by calculating the internal stress of the
polygons in each time step, and imposing a stress thresh-
old of breaking; When a polygon reaches this limit, it
is then replaced by a set of smaller ones, having the
same area as the original one. An important question
is whether shear bands develop fractal distribution of
grain sizes like in real fault gouges [1]. Understanding
the dynamic of such fractal gouges will contribute to
solve some enigmatic issues on earthquakes, such as the
reason of the low heat production of fault zones and the
origin of aseismic creep, where the two tectonic plates
move each other without producing earthquake activity
[29; 30].
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