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Abstract – I present a method to simulate complex-shaped interacting bodies, a problem which
appears in many areas, including molecular dynamics, material science, virtual reality, geo- and
astrophysics. The particle shape is represented by the classical concept of a Minkowski sum, which
permits the representation of complex shapes without the need to define the object as a composite
of spherical or convex particles. A well-defined conservative and frictional interaction between
these bodies is derived. The model (particles+ interactions) is much more efficient, accurate and
easier to implement than other models. Simulations with conservative interactions comply with
the statistical mechanical principles for conservative systems. Simulations with frictional forces
show that particle shape strongly affects the jamming phenomena in granular flow.

Copyright c© EPLA, 2008

Introduction. – Realistic modeling of interacting
bodies has a fundamental impact in several research
areas. In most areas particle shape plays a key role:
i) drug molecules often have to act as a key in a lock
formed by a protein cavity, otherwise they lose their
activity [1]; ii) liquid crystals consisting of rod-shaped,
disk-shaped, or banana-shaped molecules exhibit tran-
sition to a nematic phase, which is strongly dependent
on particle shape [2]; iii) the microscopic description of
geological materials requires the modeling of cohesive-
frictional interaction between particles with a wide range
of shapes [3]; iv) computing the motion of rigid and
articulated bodies can lead to new advances in robotics
and automation [4]; v) dynamics simulation of complex-
shaped objects has fundamental importance in virtual
reality applications, as realistic force feedback between the
user and the computer-simulated environment guarantees
realism in the simulations [5].
The most typical approach for these applications is

to solve the dynamics of interacting rigid bodies, where
their real shapes are approximated by polyhedra [4,6,7].
The most difficult aspect for the simulations is to model
contact interactions. In computer graphics, or other forms
of interactive computing, the interaction between poly-
hedra is resolved by decomposing them in convex pieces,
and applying penalty methods, impulse-based methods
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or dynamic constraints in the interaction between these
pieces. Impulse-based methods allow real-time simu-
lations, but they cannot handle permanent or lasting
contacts [4]. On the other hand, constraint methods
can handle resting contacts with infinite stiffness, but
simulations are computationally expensive and lead in
some cases to indeterminacy in the solution of contact
forces [6]. This indeterminacy is removed by using penalty
methods, where the bodies are allowed to interpenetrate
each other and the force is calculated in terms of their
overlap. However, the determination of such contact force
is still heuristic and lacks physical correctness [7,8].
Scientific applications require high-precision dynamic

simulations and reliable interaction models capturing the
real physics of the problem. Robust penalty methods
have been proposed for two-dimensional (2D) simulations
using polygons [3,8]. They allow to gain insight in the
further development of three-dimensional (3D) models. In
the case of convex polygons, the force is calculated as a
function of their overlap area [3]. However, the assumption
that elastic force is a function of their overlap leads to
a non-conservative elastic interaction [8]. An alternative
approach is to assume that the potential elastic energy
is a function of the overlap. Then forces and torques are
derived from this potential [8]. This approach, however,
leads to very expensive force calculations, partly because
each particle needs to be decomposed in triangles, and
partly because many different interactions cases need to be
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considered separately. Both approaches are also extremely
difficult to extend to 3D, because the calculation of
the overlap between two polyhedra is computationally
very expensive. This is the main reason why most of
the commercial codes for particulate systems are still
based on simulations with spheres, or clumps of spheres
representing complex-shaped objects [9].
In this letter I present a solution to this problem in 2D,

using the concept of spheropolygons. They are generated
from the Minkowski sum of a polygon with a disk, which
is nothing more than the object resulting from sweeping
a disk around a polygon. This simple concept can be used
to generate very complex shapes, including non-convex
bodies, without the need to decompose them into spherical
or convex parts. The interaction between spheropoly-
gons is modeled by considering all possible vertex-edge
interactions. The result is a simple and elegant model,
where different interaction laws can be implemented
straightforwardly. I anticipate that this model will be the
starting point to the development of a new generation
of particle-based models. These models will capture both
complex particle shape and realistic interactions laws
in a unified framework, allowing simulations of several
systems involved in complex-shaped rigid bodies.

The model. – To solve the interaction between sphero-
polygons, we adopt the basic assumption of rigid-body
dynamics: The particles do not change of shape, and
interaction occurs when they overlap. Finite stiffness is
attributed to the particles, so that the bodies are not truly
rigid as those used in the Contact Dynamics method [10].
The model is implemented in a C++, fully customizable,
object-oriented code.

Minkowski sum. Given two sets of points P and
Q in an Euclidean space, their Minkowski sum is given
by P +Q= {�x+ �y | �x∈ P, �y ∈Q}. This operation is
geometrically equivalent to the sweeping of one set
around the profile of the other without changing the
relative orientation. A special case is the sum of a polygon
with a disk, which is defined here as spheropolygons.
Other examples of a Minkowski sum are the sphero-
cyllinder (sphere+ line segment) [11], the sphero-
simplex (sphere+ simplex) [12] and the spheropolyhedron
(sphere+polyhedron) [13], which are used in simulations
of particulate systems.
A prototype of the spheropolygons is the Minkowski cow

shown in part (a) of fig. 1. The Minkowski sum is compared
to the clump of disks technique shown in part (b) of fig. 1.
The number of vertices required to represent a complex
shape with the Minkowski sum is typically lower than the
number of disks needed to reconstruct the clumpy object.
This property holds when one removes the inner disks of
the clumpy object. In the case of the clumpy cow, the
total number of disks is 726, and the number of boundary
disks is 296, which is still larger than the 62 vertices of
the polygon. Another visible advantage of the Minkowski

Polygon

Sphere
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Fig. 1: (a) Minkowski cow obtained by sweeping a disk around
a polygon of 62 edges. The disk has radius 10 cm and the length
of the polygon is 3m. (b) The cow as represented by a clump
of disks using 726 disks.

sum approach is that it removes the unwanted roughness
of the surface in the clump-of-disks method.
The point-inside-spheropolygon test combined with a

basic Monte Carlo method is used to evaluate the inte-
gral expressions for mass, center of mass and the moment
of inertia. This numerical integration, whose details are
explained elsewhere [14], does not represent much compu-
tational effort, because the mass properties are calculated
only once and they are assumed to be constant throughout
the simulation.

Interaction force. To solve the interaction between
spheropolygons, we consider all vertex-edge distances
between the polygons. Let us take two spheropolygons SPi
and SPj with their respective polygons Pi and Pj and the
radii of the disks ri and rj . Each polygon is defined by the
set of vertices {Vi} and edges {Ei}. The overlapping length
between each pair of vertex-edge (V,E) is defined as

δ(V,E) = 〈ri+ rj − d(V,E)〉, (1)

where d(X,E) =‖ �Y − �X ‖ is the Euclidean distance from
the vertex V to the segment E. Here �X is the position of
the vertex V and �Y is its closest point on the edge E. The
ramp function 〈x〉 returns x if x> 0 and zero otherwise.
The force �Fij acting on particle i by the particle j is

defined by

�Fij =−�Fji =
∑
ViEj

�F (Vi, Ej)+
∑
VjEi

�F (Vj , Ei), (2)

where �F (V,E) represents the force between the vertex
V and the edge E. If the vertex-edge overlapping length
is zero, we take �F (V,E) = 0. Different vertex-edge forces
can be included in the model: linear dashpots, non-linear
Hertzian laws, Lennard-Jones forces, dissipative viscous
forces, sliding friction, etc.
The torque on particle i given by j is

τij =
∑
ViEj

(�R(Vi, Ej)−�ri)× �F (Vi, Ej)

+
∑
VjEi

(�R(Vj , Ei)−�ri)× �F (Vj , Ei), (3)
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where �ri is the center of mass of particle i, and �R is the
point of application of the force, which is taken as the
middle point of the overlap region between the vertex and
the edge:

�R(V,E) = �X +

(
ri+

1

2
δ(V,E)

) �X − �Y
‖ �Y − �X ‖ , (4)

The evolution of �ri and the orientation ϕi of the particle
is governed by the equations of motion:

mi�̈ri =
∑
j

�Fij −migŷ, Iiϕ̈i =
∑
j

τij . (5)

Here mi and Ii are the mass and moment of inertia of the
particle. The sum is over all particles interacting with this
particle; g is the gravity; and ŷ is the unit vector along
the vertical direction.

Efficient calculation of forces. The efficiency of the
dynamics simulation is mainly determined by the method
of contact detection. In a system of N particles, each
one with M edges, the number of calculations for contact
detection is O(N2M2). Simulations therefore become very
slow when either the number of particles or the number of
vertices is large. In order to speed up the simulations, we
create a neighbor list of all pair particles which are likely to
be in contact. We also use for each element of this neighbor
list a contact list of those vertex-edge pairs which are in
potential overlap. The neighbor list is calculated as the
collection of all pair particles whose distance between them
is less than 2α, where alpha is called Verlet distance [14].
For each element of the neighbor list, a contact list is
defined as the collection of all vertex-edge pairs whose
distance is less than 2α. These lists are updated when
the maximal displacement over all points of the particles
after the last neighbor update is larger than α [14]. A link
cell algorithm [8] is used to allow rapid calculation of the
neighbor list. This method for neighborhood identification
using neighbor and contact lists requires little memory
storage, and reduce the amount of calculations of contact
forces toO(N), which is of the same order as in simulations
with circular particles [8].

Time integration. The equations of motion of the
system are numerically solved using a four order predictor-
corrector algorithm [15]. A pseudocode with the basic
procedures in each time step is shown in Algorithm 1. In
each iteration, the algorithm visit each instance of the
particle class and changes its position, its derivatives, and
the vertices of its polygon. The algorithm is similar to
the one used in simulations with circular particles, except
that it needs an additional procedure to update the
vertices of the polygons. This procedure is required also
in simulations with polygons, and it involves O(N,M)
calculations. However, simulations with spheropolygons
are faster than with polygons because the contact force
given by eqs. (2) is much simpler than the one used in
polygons [3,8]. Note also that the Minkowski sum does not

Algorithm 1: One time step of the time integration
scheme.

Input: state of the particles at time t
Output: state of the particles at time t+∆t
predict position of the particles and its derivatives
using a Taylor expansion;
update vertices of the polygons;
if neighbor update condition is satisfied then
calculate link cell;
update neighbor;
update contact list;

end
calculate contact forces between neighbor particles;
apply contact forces to the particles;
apply gravity forces to the particles;
correct positions and its derivatives using forces and
torques.

need to be calculated during the time integration, which
is, along with the neighborhood identification, one of the
main reasons of the efficiency of the code.

Benchmark tests. – Simulations will be perform
using Minkowski cows interacting via repulsive, frictional
forces

�F (V,E) = knδn �N + ktδt �T , (6)

where �N = (�Y − �X)/ ‖ �Y − �X ‖ is the normal unit vector.
The tangential vector �T is taken perpendicular to �n.
δn is the overlapping length defined in eq. (1). The
elastic displacement δt accounts frictional forces, and it
must satisfy the sliding condition |Ft|<µFn, where µ
is the coefficient of friction [16]. The parameters of the
simulations are the normal stiffness k= 107N/m, the
tangential stiffness kt = 0.1kn, friction coefficient µ= 0.5
gravity g= 10m/s2, density σ= 1kg/m2, time step
∆t= 10−5 s and the Verlet distance α= 1m.
We perform three series of simulations. The first one

corresponds to a test with two particles with only repulsive
forces (kt = 0). The second series involves many particles
interacting via repulsive forces. The third set are granular
flow simulations using gravity, along with repulsive and
frictional forces.

Cow-landscape interaction. To demonstrate the capa-
bility of the model to solve interactions between complex,
non-convex–shaped bodies, I simulate a Minkowski cow
bouncing on a simple landscape (see fig. 2). The cow
initially has zero angular and linear velocity. Periodic
boundary conditions are applied in the horizontal direc-
tions, which means that when the particle leaves the space
domain at one side it appears automatically at the other
side. The space domain is given by 0<x< 20m.
At time t= 1.82 s one of the vertices of the cow get into

contact with one of the edges of the landscape. The elastic
force produced by this contact transfers part of its linear
momentum into angular momentum. This makes the cow
rotate. We note a clear difference of the Minkowski cow
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Fig. 2: Four different snapshots of the simulation of a
Minkowski cow bouncing on a simple landscape.

with respect to the spherical particles: In the absence
of frictional forces, the landscape can transfer angular
momentum to the cow during the collision. This is because
the force is not collinear with the line connecting the
contact point to the center of mass of the object, as
expected in non-spherical objects.
The time evolution of the energy components are

presented in fig. 3. Elastic energy has a negligible contri-
bution to the energy budget, as it differs from zero only
for short times during the collisions. The effect of the
interaction force is to produce exchanges of linear and
angular kinetic energy during collision. Energy conserva-
tion is numerically verified by taking the sum of all energy
contributions. This sum remains almost constant, except
minute numerical fluctuations due to time discretization.
Energy balance is also guaranteed when particles are
represented by clump of disks. Yet we will see later that
the main advantage of the Minkowski sum method is the
high performance of the simulations.

Many-body simulation. I present here simulations
with large number of particles with repulsive interac-
tions and no gravity. The simulations will allow us to
investigate the statistical-mechanical equilibrium, and to
compare the efficiency of the Minkowski sum approach
with other methods. First, I present the results of a simu-
lation with 400 Minkowski cows confined by a fixed rectan-
gular box (see fig. 4). Each particle occupies an area of
a= 6.52m2 and the area of the box is A= 10609m2. These
values lead to a volume fraction of Φ=Na/A= 0.246.
Gravity and frictional forces are set to zero. Initially, each
particle has zero angular velocity and a linear velocity
of 1m/s with random direction. Due to collisions, the
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Fig. 3: Energy budget in bouncing cow simulation. The total
energy ET consists of the gravitational energy Eg =mgy, the
kinetic energy Ek =

1
2
mv2+ 1

2
Iω2, and the potential energy Ee

given by Ee = (kn/2)(
∑
ViEj

δ(Vi, Ej)+
∑
VjEi

δ(Vj , Ei)). As

is expected for a conservative system, the sum of all energy
contributions lead to a constant value, with and error which is
lower than 0.0001% throughout all the simulation.

Fig. 4: Snapshot of the simulation with 400 Minkowski cows
confined in a rectangular box.

linear momentum of each particle changes and part of it is
transferred to angular momentum. As a consequence, the
rotational kinetic energy increases as shown in fig. 5. We
observe a stationary regime, where the average of rota-
tional kinetic energy reaches the limit of 1/2 the linear
kinetic energy. This is in agreement with the theorem
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Fig. 5: (a) Time evolution of the total linear and rotational
kinetic energy of the particles. E0 is the initial value of
the total kinetic energy. The horizontal lines correspond
to the expected value by the equilibrium statistical mech-
anics. (b) Energy distribution N(ε) for the particles, where
ε=Ek/Ēk. The line corresponds to the Maxwell-Boltzmann
distribution n(ε) = 2β

√
εβ/π exp(−βε), with β = 1.5.

of equipartition of energy [17], which states that, in the
statistical equilibrium, each quadratic term in the energy
should contribute with the same weight in the mean energy
of the system.
We also calculate the energy distribution of the

particles in the stationary regime. We take snapshots
of the simulations between t= 1 s and t= 8 s distanced
by 0.01 s. In each snapshot the kinetic energy of the
individual particles is measured. The histogram of the
variable ε=Ek/Ēk (where Ek =

1
2 (mv

2
x+mv

2
y + Iω

2) is
the kinetic energy of the particle) is constructed using
100 identical bins between zero and the maximal value.
As shown in fig. 5, the distribution of ε can be fitted

by the Maxwell-Boltzmann distribution. The existence
of statistical equilibrium for this simple system opens
new doors to study the thermodynamics of dissipative
granular materials subjected to an external driving.
This model may provide decisive numerical experiments
to evaluate the role of particle shape and interparticle
interactions in the statistical-mechanical properties of
these granular systems.
Lastly, we compare the efficiency of the many-body

simulations of systems consisting on spherical parti-
cles, Minkowski cows and clumpy cows. The clumpy
cows are simulating by imposing holonomic constraints
on the disks, as is used classical molecular dynamics
methods [18]. The performance of the simulations is
estimated by running different processes in a Pentium 4,
3.0GHz, and calculating the CPU time during 10s
simulation in each one of them. The number of particles is
ranged between N = 100 and N = 1000. Simulations with
disks are around 50 times faster than simulation with
Minkowski cows. However, the speed of the simulation
with Minkowski cows is 40 times faster that simulations
with clumpy cows. Therefore simulations with sphero-
polygons are more efficient than those ones with clumps
of disks, because the former ones require less elements to
represent the particle shape.

Granular flow. In this section we introduce another
interesting application of this model: the study of the
effect of particle shape on the jamming phenomenon of
granular flow. Examples of 2D granular flow are pedestrian
or vehicle traffic, transport of baggage in conveyor belts in
airports, and gravity flow in a hopper or a hourglass. The
flow may happen when particles are discharged through
a small opening, but particles may became jammed when
the opening is smaller than a critical value. Modeling of
gravity flow has been done using circular or spherical
particles [19], but the effect of shape on flow has not
been thoughtfully investigated. In particular, non-convex
particles is expected to jam more easily than convex, or
circular particles.
Granular flow with non-convex particles is presented

using 400 Minkowski cows within a hopper geometry,
see fig. 6. We used apertures between 20m and 40m.
The results were compared to simulations with disks.
Circular particles flow continuously for all these apertures,
whereas non-convex particles jam when the aperture is
lower than 30m. Jamming is produced by arches formed
near the aperture. Simulations with convex polygons
using Pöeschel model show that the length of these arches
is around 4–6 particle diameters [8]. This contrasts to our
simulations with non-convex particles, where arches may
be larger than 20 particle diameters. A more detailed
investigation of the flow and jamming of non-convex
particle would certainly have interesting industrial
applications.

Concluding remarks. – Modeling interacting parti-
cles using spheropolygons has several advantages with
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Fig. 6: Simulations of granular flow using disks (left) and
Minkowski cows (right). Two different apertures are chosen:
20m (top) and 30m (bottom). The snapshots are taken eight
seconds after discharge.

respect to other existing particle-based models: i) The
possibility to model non-convex particles; ii) a realistic
representation of the surface curvature of particles;
iii) guaranteed compliance with physical and statistical
mechanical laws; iv) balance between accuracy and
efficiency. The model is still very simple, but extensions
to 3D simulations and more complex interactions are
achievable in the near future. 3D modeling using sphero-
polyhedra requires forces similar to eq. (2), where the
sum is over all vertex-face and edge-edge interactions.
Special attention is required for the case of two parallel
edges in contact. This case lead to a non-uniqueness in
the selection of contact points. This need to be resolved
to get a physical correctness in the torque calculation.
Applicability of the method ranges to several branches

of biology, physics, geo- or even astrophysics. Conserva-
tive models can be used to model dynamics of complex
molecules. Dissipative systems with complex-shaped
constituents may have interesting geophysical problems

as in avalanches (snow, debris) and earthquakes, or in
astrophysics as the dynamical evolution of precursors
of planets or the icy particles forming planetary rings.
This work is the first step for the realistic description
of conservative and dissipative particulate systems with
plenty of potential applications.
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