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Abstract One of the most difficult aspect of the realistic
modeling of granular materials is how to capture the real
shape of the particles. Here we present a method to simulate
two-dimensional granular materials with complex-shaped
particles. The particle shape is represented by the classi-
cal concept of a Minkowski sum, which permits the rep-
resentation of complex shapes without the need to define
the object as a composite of spherical or convex particles.
A well defined interaction force between these bodies is
derived. The algorithm for identification of neighbor particles
reduces force calculations to O(N ), where N is the number of
particles. The method is much more efficient, accurate and
easier to implement than other models. We prove that the
algorithm is consistent with energy conservation, which is
numerically verified using non-dissipative granular dynam-
ics simulations. Biaxial test simulations on dissipative granu-
lar systems demonstrate the relevance of shape in the strength
and stress fluctuations at the critical state.

Keywords Granular systems · Dynamics and kinematics
of rigid bodies · Molecular dynamics methods

F. Alonso-Marroquín (B)
MoSCoS, School of Mathematics and Physics,
The University of Queensland, St Lucia,
Brisbane, QLD 4072, Australia
e-mail: fernando@physics.uq.edu.au

Y. Wang
CSIRO Exploration and Mining, Technology Court,
Pullenvale, QLD 4069, Australia

Y. Wang
PO Box 883, Kenmore, QLD 4069, Australia

1 Introduction

Rapid advances in computer simulations have led to many
new developments in the modeling of particulate systems.
These systems represent real physical systems at different
scales, such as the small scale of biomolecules [1], geologi-
cal scales of snow and debris flow [2], and the astronomical
scales of the planetary rings dynamics [3]. Although particle
shape plays an important role, most theoretical and numerical
developments have been restricted to particles with spherical
or circular shape. These simplification lead in some cases to
unrealistic properties. In dissipative granular systems such
as sand piles or fault gouges, disks of spheres tend to roll
more easily than non spherical particles, leading to unrealis-
tic angles of repose and very low bulk friction coefficients [4].

Four different approaches have been presented to model
the real shape of particulate materials. In the first approach
the shape is represented as a scalar functions. This methods
can be used to represent specific shapes, such as ellipses [5],
ellipsoids [6] and superquadric [7]. The main drawback of
those methods is that the calculations required in the contact
force are much more expensive than in spherical (or circular)
particles.

In the second approach the non-spherical particle is repre-
sented by aggregates or clumps of disks and spheres bonded
together [8,9]. In this approach crushing and fracture of
aggregates can be easily modeled. The disadvantage is that
a large number of spheres are required to represent a single
particle.

The third approach is to represent the complex shape
using polygons in 2D, [10–14] or polyhedrons in 3D [15,16].
Different methods are proposed to speed up simulations,
such as linked cells [10], space triangulation [13,14] and
contact plane technique [16]. The most difficult aspect for
the simulations of these objects is the handling of contact
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interactions. Nowadays, the interaction is resolved by
decomposing them in convex pieces, and applying penalty
methods, impulse-based methods or dynamic constraints in
the interaction between these pieces. Impulse-based formu-
lations belong to the class of event-driven methods [17] They
allow real-time simulations, but they cannot handle perma-
nent or lasting contacts [15]. On the other hand, constraint
methods, also known as contact dynamics methods, can
handle lasting contacts with infinite stiffness [18]. However,
simulations with contact dynamics are computationally
expensive and lead in some cases to indeterminacy in the
solution of contact forces [19]. This indeterminacy is rem-
oved by using penalty methods such as soft molecular dynam-
ics [20], where the bodies are allowed to interpenetrate each
other and the force is calculated in terms of their overlap.
However, the determination of such contact force using poly-
gons is still heuristic and lacks physical correctness, because
the interactions do not comply with energy conservation [21].

A fourth approach to this problem for 3D simulations were
propose by Pournin and Liebling using the mathematical con-
cept of spheropolyhedrons [22,23]. These objects are gen-
erated from the Minkowski sum of a polyhedrons with an
sphere, which is nothing more than the object resulting from
sweeping an sphere around the polyhedrons. This simple con-
cept can be used to generate very complex shapes, including
non-convex bodies, without the need to decompose them into
spherical or convex parts. An improved interaction model
and shape-definition for complex shaped particles was pre-
sented in [24] using spheropolygons (i.e. the Minkowski sum
between a polygon and a disk). By considering multiple con-
tacts between the particles, our interaction model is different
to the original Pournin & Liebling method [22,23], which
assumed a single contact per particle pair. Some of the advan-
tages and improvements involve (i) an elegant way to deter-
mine the contact (normal and tangential), (ii) the possibility
to simulate non-convex particles, (iii) the enhancement of the
stability and a reduction of the numerical errors in the energy
conservation.

Here we present a detailed description of this method.
In Sect. 2 we describe the basic components of the numer-
ical model. In Sect. 3 we prove that the interaction model
complies with the physical laws of conservative systems.
Section 4 shows that the strength and the fluctuations at
critical state of dense dissipative granular materials depend
strongly on particle shape. Then in Sect. 5 we demonstrate
that the model is much more efficient than the clump-of-disks
models.

2 Model

Systems with different particle shapes are modeled using
the concept of the Minkowski sum of a polygon (or polyline)
with a disk. This mathematical operation is explained in Sec-

tion 2.1. Section 2.2 deals with the numerical calculation
of mass properties. The interaction between two particles is
obtained from the individual interactions between each ver-
tex of one particle and each edge of other, as explained in
Sect. 2.3. In Sect. 2.4 we show that the number of floating
point operations used to calculate interaction forces is drasti-
cally reduced by using a Verlet list and a contact list for each
pair of neighbor particles. In Sect. 2.5 we present the archi-
tecture of the code used to implement the numerical model.

2.1 Minkowski sum

Given two sets of points P and Q in an Euclidean space,
their Minkowski sum is given by P + Q = {�x + �y | �x ∈
P, �y ∈ Q}. This operation is geometrically equivalent to the
sweeping of one set around the profile of the other without
changing the relative orientation, see Fig. 1. A special case
is the sum of a polygon with a disk, which is defined here
as spheropolygon. Other examples of a Minkowski sum are
the spherocyllinder (sphere+ line segment) [25], the sphero-
simplex (sphere+ simplex) [22] and the spheropolyhedron
(sphere + polyhedron) [23], which are used in simulations of
particulate systems.

The main advantage of the spheropolygons is that they
allow us to represent any shape in 2D, from rounded to angu-
lar particles, and from convex to non-convex shapes. As we
will see in Sect. 2.3, the Minkowski sum does not need to
be explicitly calculated to determine the particle interaction.
The mass properties are calculated numerically, but it does
not affect much the simulation time because they are evalu-
ated only at the beginning of the simulation.

2.2 Computational geometry

Before solving the dynamics of spheropolygons we need
to introduce some useful concepts and algorithms. Given a

disk

Polygon

Fig. 1 Minkowski sum of a polygon with a disk
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Fig. 2 Crossing test to determine whether a point is inside a polygon.
The point is inside the polygon if the number of intersections of the ray
with the polygon’s edges is odd

spheropolygon S P = P + S, the polygon P will be called
the skeleton; and the radius r of the disk S sphero-radius.

2.2.1 Point is inside test

An important numerical algorithm to calculate the mass prop-
erties of the spheropolygons is to determine whether a point
lies on the interior of a polygon. Franklin [26] proposes a
method to determine whether a point (x, y) is inside of a
polygon, see Fig. 2. First, a semi-infinite ray is run horizon-
tally (increasing x , fixed y) out from the test point, and count
how many edges it crosses. At each crossing, the ray switches
between inside and outside.

The essence of the ray-crossing method is as follows.
Think of standing inside a field with a fence representing
the polygon. Then walk west. If you need to jump the fence
you know you are now outside the polygon. If you have to
jump the fence again you know you are now inside again;
i.e., if you were initially inside the field, the total number of
fence jumps you would make will be odd, whereas if you
were outside the jumps will be even. Then we can now write
an outline of pseudo-code for this problem into Algorithm 1.

int crossings = 0;
for each line segment of the polygon do

if ray down from (x,y) crosses segment then
crossings++;

end
end
if crossings is odd then

return (inside);
else

return (outside);
end

Algorithm 1: Algorithm to determine whether a point is
inside of a polygon.

2.2.2 Point-inside-spheropolygon test

The distance d( �X , P) from a test point �X to the skeleton is
defined as follows: If the point is outside the polygon, it is
given by the minimum distance between the point and the
edges of the polygon; If the point is inside the polygon, we
let d( �X , P) = 0. Then the point �X is inside of the sphero-
polygon when it satisfies d( �X , P) < r .

2.2.3 Calculation of the mass properties

The point-inside-spheropolygon test combined with a basic
Monte Carlo method is used to evaluate the integral expres-
sions for mass, center of mass and the moment of inertia. The
numerical integration is performed by taking a quasi-random
set of points �Xi uniformly distributed in a rectangular box
containing the spheropolygon. Then the integral over the area
enclosed by the spheropolygon of any function f ( �X) is cal-
culated as:

M =
∫

S P

f ( �X)da ≈ Abox

Np

Np∑
i=1

χ( �Xi ) f ( �Xi ), (1)

where Abox is the area of the rectangular box, �Xi is a quasi-
random point inside Abox, and Np = is the number of points.
χ( �X) is the characteristic function, which returns one if �X
is inside the spheropolygon and zero otherwise. Replacing
f ( �X) by σ , σ �Xσ || �X ||2 results in M = m, m�r , I + m||�r ||2
respectively, where σ is the density, and m, �r and I are the
mass, center of mass and moment of inertia.

2.3 Interaction force

To determine the interaction between spheropolygons we
consider all vertex-edge distances between the polygons base.
We consider two spheropolygons S Pi and S Pj with their
respective polygons base Pi and Pj and sphero-radii ri and r j .
Each polygon is defined by the set of vertices {Vi } and edges
{E j }. The overlapping length between each pair of vertex-
edge (V, E) is defined as

δ(V, E) = 〈ri + r j − d(V, E)〉, (2)

where d(X, E) = || �Y − �X || is the Euclidean distance from
the vertex V to the segment E . Here �X is the position of
the vertex V and �Y is its closest point on the edge E . The
ramp function 〈x〉 returns x if x > 0 and zero otherwise. The
overlapping length in (2) is equivalent to the interpenetration
between the disks of radii ri and r j centered on �X and �Y .

The force �Fi j acting on particle i by the particle j is
defined by:

�Fi j = − �Fji =
∑
Vi E j

�F(Vi , E j ) +
∑
Vj Ei

�F(Vj , Ei ), (3)

123



320 F. Alonso-Marroquín, Y. Wang

where F(V, E) represent the force between the vertex V and
the edge E . If the vertex-edge pair do not overlap, F(V, E)

= 0. Different of vertex-edge forces can be included in
the model: linear dashpots, non-linear Hertzian laws, damp-
ing forces proportional to the relative normal and tangential
velocities, sliding friction, rolling resistance, cohesive forces,
etc. The force of (3) is applied to each particle in the middle
point of the overlap region between the vertex and the edge:

�R(V, E) = �X +
(

ri + 1

2
δ(V, E)

) �X − �Y
|| �Y − �X || , (4)

so that the resulting torque on particle i given by j is

τi j =
∑
Vi E j

( �R(Vi , E j ) − �ri

)
× �F(Ei , Vj )

+
∑
Vj Ei

( �R(Vj , Ei ) − �ri

)
× �F(E j , Vi ), (5)

where �ri is the center of mass of particle i .
The evolution of �ri and the orientation ϕi of the particle

is governed by the equations of motion:

mi �̈r i =
∑

j

�Fji − mi gŷ, Ii ϕ̈i =
∑

j

τ j i . (6)

Here mi and Ii are the mass and moment of inertia of the
particle. The sum is over all particles interacting with this
particle; g is the gravity; and ŷ is the unit vector along the
vertical direction.

2.4 Efficient calculation of forces

The efficiency of the dynamics simulation is mainly deter-
mined by the method of contact detection. In a system of
N particles, each one with M edges, the number of opera-
tions required to update the positions of the particle in each
time step is in the order of O(N M), whereas the number
of calculations for contact detection is O(N 2 M2). Simula-
tions therefore become very slow when either the number of
particles or the number of vertices is large.

The first step to speed up the simulations is to execute the
force calculation only over neighbor particles. With this aim
we introduce the Verlet list, which is the collection of pair
particles whose distance between them is less than 2δ (the
distance between two particles is defined as the minimum of
all vertex-edge distances). The parameter δ is equivalent to
the Verlet distance used in simulations with spherical parti-
cles [21]. As shown in the Fig. 3, the Verlet method is equiv-

Fig. 3 Method for
identification of Verlet list: the
space domain is divided by
square cells. Then the potential
neighbor of the particles are
those hosted in the same cells,
or in the adjacent cells. Each
particle has as skin of thickness
δ. If the skins of two potential
neighbors overlap, they are
included in the neighbor list
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alent to surround the particles by a skin, so that the Verlet list
consists of all particles pairs whose skins overlap.

A link cell algorithm [21] is used to allow rapid calculation
of this Verlet list: First, the space occupied by the particles
is divided in cells of side D + δ, where D is the maximal
diameter of the particles. Then the link cell list is defined as
the list of particles hosted in each cell. Finally, the candidates
to being neighbors of a particle are searched only in the cell
occupied by this particle, and its eight neighbor cells.

The Verlet list is calculated at the beginning of the sim-
ulation, and it is updated when the following condition is
satisfied:

max
1≤i≤N

{�xi + Ri�θi } > δ. (7)

�xi and �θi are the maximal displacement and rotation of
the particle after the last neighbor list update. Ri the maximal
distance from the points on the particle to its center of mass.
After each update �xi and �θi are set to zero. The update
condition is checked in each time step.

The efficiency of the simulations is very sensitive to the
parameter δ. Increasing the value of δ makes updating of
the list less frequent, but increases the size of the list, and
hence the number of force calculations and the memory used
by the simulation. Therefore, the parameter δ must be cho-
sen by making a compromise between the storage (size of
the neighbor list) and the computing time (frequency of list
updates and number of force calculations).

The Verlet list reduces the amount of calculations to
O(N M2), where M is the number of edges of the particles.
Therefore the simulations are still very expensive when parti-
cles consist of a large number of vertices. Further reduction of
the number of calculations between neighbor particles can be
done by identifying which part of a particle is neighbor to the
other. This idea is implemented as follows: for each element
of the Verlet list, we create a contact list, which consists of
those vertex-edge pairs whose distance between them is less
than ri +r j +2δ, where ri and r j are the sphero-radii. In each
time step, only these vertex-edge pairs are involved in the
contact force calculations. Overall, neighborhood identifica-
tion requires a Verlet list with all pair of neighbor particles,
and one contact list for each pair of neighbors. These lists
require little memory storage, and they reduce the amount of
calculations of contact forces to O(N ). We therefore reduce
the complexity of the algorithm to calculate contact forces at
the same level as in simulations with circular particles.

2.5 Object-oriented implementation

The numerical model is implemented in C++ using an
object-oriented design. The objects are organized in three
classes: Particles, Interactions and Tags. The particle class
contains the dynamics variables of the particle (position, ori-

entation, mass, etc) and the information about its geometry
(vertices of the skeleton and sphero-radius). The interaction
class contains the variables of the elastic deformation at the
contacts and the interaction parameters (stiffnesses, coeffi-
cients of friction and rolling, etc). The tag class store infor-
mation about physical constraints on one particle, such as
the external force imposed on the particle, or the value of the
velocity fixed on the particle.

As shown in Fig. 4, three data structures are defined: (1)
The particle generator contains a set of functions to generate
the geometry of the particles, (2) The simulator updates the
state of particles and interactions in each time step according
to the interaction laws and physical constraints of the system.
The simulator updates also the Verlet list when the neighbor
update condition is satisfied, (3) The graphical interface use
the data from the simulator to generate graphical output by
writing either Matlab or Gnuplot instructions.

For the data structure of the simulator we use of the Stan-
dard Template Library (STL) of the C++ language [27].
The containers of this library provide us efficient methods
to manage the objects of the model (particles, interactions,
physical constrains and neighbor tables). Four containers are
defined in the simulator:

• Particle Array contains a STL-list of particles. and a set
of operators to access or modify their state.

output

Graphical
Interface Simulator

Generator
Particle

Particle Array Neighbor table

Tagged ParticlesInteraction Storage

(a)

(b)

Fig. 4 Top data structure of the code. Particle Generator creates the
particles and they are send to Simulator. There the particles are updated
in each time step. The simulator allows access to the state the system by
using an output of raw data, or by producing a graphical output using a
Graphical Interface. Bottom The simulator consists of four containers
to store the data of particles, neighborhood, interactions and physical
constraints
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• Interaction Storage allows access to the interactions
between particles by means of key/value STL-map. The
key consists of the indexes of the particles of the inter-
action. The value corresponds to the interaction itself,
which contains the physical parameters of the contacts
(deformation and stiffnesses). The interaction storage
container uses a binary tree for rapid access to a contact
given the indexes of the particles. It contains also a set of
operators to access and modify the state of the
interactions.

• Tags List stores a list of tags. Each tag contains the infor-
mation required to impose physical constraints (fixed dis-
placement or imposed force) to a particle. The Tags List
contains also a set of operators to access or change the
state of the tagged particles.

• Neighbor table contains the link cell structure, a list of
all pointers to particles, and a list of the pointer of those
particles marked as big. Walls are examples of big par-
ticles and they are not taken into account into the link
cells. The neighbor table contains also a function which
returns the list of all potential neighbors of a given parti-
cle. These potential neighbors include: (i) Particles living
in the same cell, (ii) particles living in an adjacent cells,
(iii) all big particles. The potential neighbors are used by
the simulator to calculate the Verlet list.

To access the elements of these container, we use the power-
ful for_each operator. This operator takes as an argument a
method of the class, and apply this method to all elements of
the container. This is a very useful operator because it allows
to access, process, or modify the elements without the need
to write the for-loops of classical programming.

The main task of the simulator is to update the state of
the system in each time step. The function oneStep uses
a four order predictor-corrector integrator algorithm [21].
A pseudocode with the basic procedures of this function is
shown in Algorithm 2. The predictor method calculates the
position (center of mass and orientation) of each particle and
its derivatives using a Taylor expansion. Next, the vertices
of the all polygons are updated according to the predicted
positions of the particles. If the neighbor update condition of
(7) is satisfied, the link cell is calculated, and then it is used
to update the Verlet list and the contact list of each one of its
elements. Next the contact forces and torques are calculated.
Then force and/or position of the tagged particles is modi-
fied according to the constraints prescribed in the Tags list.
Finally, forces and torques are used to correct the position of
the particles and their derivatives. The algorithm is basically
the same as that used with polygons [20], except that the
force is calculated using (3) and (5). Note that the efficiency
of the code is based on the simplicity of the contact force
calculation, and in the fact that the Minkowski sum does not
need to be calculated during the time integration.

Input: state of the simulator at time t
Output: state of the simulator at time t + �t
ParticleArray.for_each(predictor);
if neighbor update condition is satisfied then

NeighborTable.update(ParticleArray);
calculate Verlet list;
insert and delete interaction;
update contact lists;

end
ParticleArray.for_each(update vertices);
ParticleArray.for_each(set Force to zero);
ParticleArray.for_each(set Torque to zero);
InteractionStorage.for_each(update contacts);
InteractionStorage.for_each(calculate Forces);
ParticleArray.applyGravity(gravity);
TagsList.for_each(set Force);
TagsList.for_each(set Torque);
TagsList.for_each(set Velocity);
TagsList.for_each(set Angular Velocity);
ParticleArray.for_each(corrector);

Algorithm 2: One time step in the Simulator.

3 Non-dissipative granular dynamic simulations

As a first example we present a model for many body con-
servative systems. We introduce a simple contact force which
includes only elastic repulsion between spheropolygons.
We first prove that the system is conservative, i.e. the energy
of the system does not change with time. Then we use
many-body simulations with different particle shape to eval-
uate the discretization error in the energy conservation.

3.1 Energy balance

The elastic vertex-edge interaction between the particles is
obtained by using the following force in (3) and (5):

�F(V, E) = kδ(V, E) �N , (8)

where k is the stiffness constant, δ(V, E) is given by (2) and
�N is the unit normal vector:

�N = �Y − �X
|| �Y − �X || (9)

Here �X is the position of the vertex V and �Y is its closest
point on the edge E .

The question which now arises is whether the vertex-edge
interaction in (8) leads to a conservative system. Let us mul-
tiply the first equation in (6) by �̇r and the second one by ϕ̇.
Next we sum both equations and then sum over all particles.
After some algebra we get the energy conservation equation:

ET =
∑

i j

Ee
i j +

∑
i

(
1

2
miv

2
i + 1

2
Iiω

2
i

)
= cte. (10)
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The first term of this equation corresponds to the potential
elastic energy at the contacts:

Ee
i j = 1

2
k

⎛
⎝∑

Vi E j

δ(Vi , E j ) +
∑
Vj Ei

δ(Vj , Ei )

⎞
⎠ . (11)

The other terms of (10) are the linear and rotational kinetic
energy of the particles. Therefore we have proven that the
elastic force in (8) belongs to the potential energy defined
by (11), which proves that our model is conservative. The
simplicity of this force contrasts to the Pöschel’s model for
interacting triangles [21], where the forces and torques asso-
ciated to his potential energy lead to a much more expensive
calculation.

3.2 Discretization error

Other important aspect of this dynamics simulation is the
accuracy of the numerical solution. The numerical error in

the energy calculation is evaluated by performing a series of
simulations with many non-spherical particles interaction via
the elastic force given by (8). Each test consists of 400 parti-
cles confined by four fixed rectangular walls with a volume
fraction of 	 = 0.186. Each sample consists of particles with
a specific spheropolygon-like shape as shown Fig. 5: disks
(point+disks) rice (line+disk), peanuts (polyline+disk),
and pebbles (triangle+disk). The dimensionless parameters
of the simulations are a constant stiffness k = 1, density
σ = 1, time step �t = 0.05 and Verlet distance δ = 0.11.

Initially, each particle has zero angular velocity and a
linear velocity of 1 with random orientation. Due to colli-
sions, the linear momentum of each particle changes and
part of it is transferred to angular momentum. Fig. 6 shows
the potential (a) kinetic (b) and total (c) energy of the sys-
tem. Elastic energy has a negligible contribution to the energy
budget, as it differs from zero only for short times during col-
lisions. Energy conservation is numerically verified within a
relative error of 0.01%. The energy fluctuations are produced

Fig. 5 Systems obtained from
Minkowski sum approach:
a)disks (Vertex + disk). b rice
(segment + disk), c peanuts
(Polyline + disk) and d pebbles
(triangle + disk). The particles
are generated with a uniform
distribution of areas between
Amin and Amax . The
polydispersity factor is chosen
as (Amax − Amin)/(Amax +
Amin) = 0.1

(a) (b)

(c) (d)
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Fig. 6 Time evolution of the
total kinetic and potential
energy in the non-dissipative
system. As is expected from the
energy conservation, the total
energy keeps constant, except
numerical error which are lower
than 0.01% throughout all the
simulations
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by time discretization. We shall note also that energy has a
trend to grow slowly in all samples, which seems to be inher-
ent from most of the integration methods.

4 Dissipative granular dynamics simulation

In this section we present numerical results with dissipative
granular materials. These systems are simulated by using the
following force in (3) and (5):

�F(V, E) = knδn �N + ktδt �T (12)

Where �N is the normal unit vector given by (9). The tangen-
tial vector �T is taken perpendicular to �N . The overlapping
length δn is defined in (2). The elastic displacement δt takes
into account frictional forces, and it satisfies the sliding con-
dition |Ft | < µFn , where µ is the coefficient of friction [28].
The parameters of the simulations are the normal stiffness
k = 1, the tangential stiffness kt = 0.1kn , friction coeffi-
cient µ = 0.5, density σ = 1, time step �t = 0.05 and
the Verlet distance α = 0.1. Viscosity forces proportional to
relative velocity of the contacts are also included to allows
relaxation of the system.

We start with a loose packing of particles confined in a
rectangular space by four walls. First we set the friction
coefficient to zero. Then we confine the sample by apply-

ing a constant pressure (force per unit of length) on the four
walls. The resulting packings for disks, rice, peanuts and peb-
bles are shown in Fig. 7. The densest packings are reached
with rice and pebbles (packing fractions around 0.88). pea-
nuts have an intermediate packing fraction of 0.87. Whereas
the disk exhibits the lowest packing fraction of 0.80. The
main reason of the high packing fraction of rice is that the
particles tend to align, leading to edge-edge contacts with
no space between them. Peanuts tend to align too, but they
reach less packing fraction due to the non-convexity of the
particles.

We can now test the stress-strain response of the packings
by performing biaxial tests simulations. First the friction
coefficient is set to the original value and the sample is com-
pressed until it reached a pressure value p0 = 0.001kn . Then
the lateral walls are subjected to constant pressure by apply-
ing an horizontal force Fle f t = po H , where H is the height
of the sample. The horizontal walls are moved towards each
other with constant velocity. This velocity is chosen small
enough to avoid time-dependency effects. The axial strain is
defined as ε = �H/H0, H0 being the initial height of the
sample. the stress at the top wall is given by σyy = Ftop/W ,
where Ftop is the force imposed on the top wall by the par-
ticles, and W is the width of the sample. The void ratio is
calculated as ν = (A − Ap)/AP , where A = H W is the
area of the sample and Ap is the total area of the particles.
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Fig. 7 Granular packing
obtained with disks, rice,
peanuts and pebbles

(a) (b)

(d)(c)

Figure 8 shows the evolution of the stress and the void ratio
during the biaxial test. At the beginning of the simulation, the
stiffness (i.e. the slope of the stress-strain curve) decreases
as the strain increases. The void ratio first decreases until it
reaches a minimum. Then the void ratio starts to increase and
it reaches the inflexion point when the stress peaks. After
this peak the void ratio keeps increasing and it reaches a
saturation level. These are key aspects of the response of
two-dimensional analogue granular material [29]. For large
deformations the stress and the void ratio reach a constant
value, which corresponds to the critical-state theory of soil
mechanics [30]. Note that the limit stress for non-circular
particles is much larger than that one of circular particles,
reflecting an important effect of particle shape.

Another interesting aspect of the simulations is the emer-
gence of stress fluctuations. These fluctuations are given by
stress drops accompanied by a sudden dilation of the sam-
ple. Stress drops are pronounced and infrequent for non-cir-
cular particles, whereas they are less pronounced and more
frequent for circular particles. There are some experimen-

tal evidence on stress fluctuations in torsional test with sand
[31]. However, the stress drops are only visible in coarser
materials such as beds of glass spheres [32]. Recent numeri-
cal simulations with circular [33,34] and polygonal particles
[4] shows that the stress drops involves a small number of
particles along few force chains. This may be the reason
of why stress drops are not observed in fine materials. A
sample of sand may contain million of particles. Therefore
each stress drop involves few hundreds of particles along few
chains, which may be difficult to observe in experimental
tests. This is different for samples containing glass spheres,
which contains only few thousands of particles. Therefore
the collapse of a single force chain on the packing of glass
spheres must have a relevant effect in the whole sample.
The stress fluctuations depend also on particle size distri-
bution. In our simulations the particles are about the same
size, which leads to important stress drops. This may not
be necessary true for polidisperse media. Indeed, previous
simulation on lattices with breakable bond show that stress
drops decrease as the disorder increases [35]. We therefore
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Fig. 8 Stress versus strain (a)
and void ration versus strain (b)
for different particle shapes, in
biaxial test simulations.The
dotted line in (a) represents
p/kn , where p is the applied
pressure on the lateral walls
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conclude that the dynamics of the stress drops depends both
on particle shape and the size distribution of the granular
assembly.

The mechanism of collapse of force chains is still not
clear too. The buckling of force chains has been proposed
[34]. However, our simulations with rice particles lead to
stress drops without buckling of force chains [36]. Further
numerical simulations should be done to understand better
the mechanism of stress collapse and its relevance on the
overall response of real granular materials

5 Performance

In this section we compare the efficiency of the many-body
simulations of systems consisting on circular particles,
spheropolygons and particles consisting on clumps of
spheres. Each spheropolygon corresponds to a particle with
complex shape, namely a Minkowski cow [24], and it con-
sists on 62 vertices. The clump of spheres represents the same
complex shaped particle, (a clumpy cow) and it needs 726
particles. The macroparticles are simulated by summing up
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Fig. 9 a Minkowski cow
obtained by sweeping a disk
around a polygon of 62 edges.
The disk has radius 10 cm and
the length of the polygon is 3 m.
b The cow as represented by a
clump of disks using 726 disks

(a) (b)
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Fig. 10 Cundall number versus the number of particles, in simulations
with disks, spheropolygons and clumpy particles

the contact forces between the constituting disks, and updat-
ing all the disks of each particle according with its current
position (Fig. 9). The performance of the simulations is esti-
mated by running different processes in a Pentium 4, 3.0GHz,
and calculating the Cundall number [37] for each one of
them. This number is the amount of particle time steps exe-
cuted by the processor in one second, which is calculated as
c = NT N/TC PU , where NT is the number of time steps, N
is the number of particles and TC PU is the CPU time of the
simulation. While the Cundall number provides a method to
compare efficiency of various DEM algorithms, it has the dis-
advantage that it depends on the processor and the compiler.

Figure 10 shows the Cundall number versus the number
of particles for the three cases. When the number of par-
ticles is between N = 100 and N = 1000 the Cundall
number is approximately constant. This constant is around
100, 000 for disks, 2, 000 for spheropolygons, and 50 for
clumpy particles. Therefore the simulations with spheropoly-

gons, although slower than simulations with disks, are much
faster than simulations with clumpy particles. This is because
each time step needs to update the position of 62 vertices of
the spheropolygons whereas it needs to update the position
of the 726 disks in the case of the clumpy particles. There-
fore simulations with spheropolygons are more efficient than
those ones with clumps of disks, because the former ones
require less elements to represent the particle shape.

6 Concluding remarks

We have presented a method based on the Minkowski sum
approach to simulate conservative and dissipative interac-
tions between 2D complex shaped particles. The method
allows simulations of arbitrarily shaped particles and mul-
tiple contact interactions between each pair of particles. The
implementation of the method follows the philosophy of
Object Oriented Programming. Based on the C++ STL, we
introduced the concept of encapsulated containers, which are
used to handle particles, interactions and physical constraints.
Benchmark tests proved high accuracy in the energy conser-
vation for simulations of non-dissipative systems, and the
emergence of the critical state with stick-slip fluctuations for
dissipative granular systems under shear deformation.

There is a fundamental difference in the modelling of the
interaction with spheropolygons with respect to the interac-
tion of polygons. In the first case, forces are calculated in
terms of vertex-edge distances. In the latter case, forces are
calculated in terms of the overlap between polygons. There
are two main reasons to use spheropolygons instead of poly-
gons: (1) The elastic force used in spheropolygons comes
from a potential, so that this model provides an equation for
energy balance. Therefore spheropolygons provide a solution
of the long standing problem of energy balance of simula-
tions with polygons, where elastic forces, when calculating in
terms of overlap, proves to be non-conservative; (2) The cal-

123



328 F. Alonso-Marroquín, Y. Wang

culation of the vertex-edge distances involves less floating
point operations than calculations of overlap areas, which
makes the simulations with spheropolygons more efficient
than with polygons.

We also proved that the particle shape representation using
the Minkowski sum approach is more efficient than the
clump-of-disks method. This is because the amount of data
required to represent the particle shapes using Minkowski
sum is lower than that used in the clump-of-circles method.
Benchmark tests show that the simulation with spheropoly-
gons is 40 times faster that simulations with clumps of disks.

To achieve efficient simulations we presented a technique
to identify neighborhood, which combines the Linked Cell
Method (LCM) with an extension of the Verlet List method
for non-spherical particles. In order to further speed up the
simulations we introduced a list of potential vertex-edge con-
tacts for each pair of neighboring particles, and an update
condition, which decides whether the neighbor list needs to
be updated. The algorithm presents an O(N ) complexity,
where N is the number of particles.

Future work will require a comparison of the efficiency
of our method with other algorithms with linear complexity,
such as the Linked Linear List (LLL) [38,39] and the triangu-
lation method [13,14]. In the Linked Linear List algorithm
each particle is enclosed by a rectangular box. Then two
particles are neighbor when their boxes overlap. LLL and
LCM are recommended for systems with large number of
particles, but LLL are more efficient than LCM for poly-
disperse packings [39]. In the method of triangulation, each
particle is covered by spheres. Then a triangulated mesh is
constructed with the centers of those spheres. The elements
of the mesh are used to determine the neighborhood between
particles. An important advantage of the triangulated meshes
is that they can be used for the discretization of continuum
equations embedded to DEM, providing methods to simulate
multiface flows and to couple particles with fluids.

The extension of our interaction model for 3D spheropoly-
hedrons is straightforward: Instead of vertex-edge interaction
in 2D, we need to include all vertex–face and edge–edge
interactions.

�Fi j =
∑

Ei ,E j

�F(Ei , E j ) +
∑

Vi ,Fj

�F(Vi , Fj )

+
∑

Vj ,Fi

�F(Vj , Fi ). (13)

Where E , V and F account for edges, vertex and faces. The
rotational dynamics of the spheropolyhedrons can be solved
by the numerical solution of the Euler equations using qua-
ternions, which can be found in the literature [40]

The motivation for modelling complex shaped particles
in 3D using spheropolyhedrons is to overcome the difficul-
ties of simulating interacting polyhedrons, where the calcu-

lation of forces in terms of overlap is far from trivial. The
method can also be used for irregular spheropolyhedrons,
which can provide a wider range of particle shape repre-
sentations, including non-convex particles and particles with
tunable grain roundness. These features can be included with
polyhedrons, but with an exhaustive number of features, and
hence with a huge computational cost.
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