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Bottlenecks in granular flow: When does an obstacle increase the flow rate in an hourglass?
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Bottlenecks occur in a wide range of situations from pedestrians, ants, cattle, and traffic flow to the transport
of granular materials. We examine granular flow across a bottleneck using simulations of monodisperse disks.
Contrary to expectations but consistent with previous work, we find that the flow rate across a bottleneck actually
increases if an obstacle is optimally placed before it. Using the hourglass theory and a velocity-density relation,
we show that the peak flow rate corresponds to a transition from free flow to congested flow, similar to the phase
transition in traffic flow.
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The improvement in flow rate of particles passing through
a bottleneck has applications ranging from industrial granular
flow [1,2] and traffic flow [3] to escape dynamics under
panic [4]. Optimal design for the conveyance and storage
of powders and bulk solids is a challenge faced by nearly
all industries, from powder coating to food, from nanoscale
powders and pharmaceuticals to cement, coal, and ore [5].
Since the 1960’s, empirical placement of inserts (obstacles)
before outlet openings has been used in silo design for a
number of reasons, including transformation of the flow profile
from funnel flow to mass flow, enlargement of the mass flow
rate, reduction of the stresses in the silo, and mixing and
homogenizing of bulk solids [1,2,5]. If the obstacle is placed
at an optimal height, it disturbs arches that block the flow
from being created and becoming stable [6]. Whereas the
flow problems frequently found in silo flow are relatively well
known, improvements to design of optimized escape routes
for panicking crowds are at their inception.

Studies on escape dynamics under panic have shown that
obstacles placed before the outlet can lead to substantial
changes in flow patterns. Due to the difficulties in performing
real experiments with humans, simulations of self-driven
particles have been proposed. These simulations have already
shown, counterintuitively, the benefit of placing an obstacle
before an exit to prevent or reduce injuries under conditions
of panicked escape [4,7]. Placing a column in front of an exit
substantially reduced evacuation time for ants squirted with
citronella [8,9]. Escobar and De la Rosa explain this behavior
as the “waiting-room” effect [7] whereby particles slow down
and accumulate above the obstacle, decongesting the exit and
increasing the flow rate. In this Rapid Communication we
provide full modeling of the flow of monodisperse granular
material around such an obstacle where we observe a peak
in flow rate for optimized conditions. Based on statistics
from simulations, we develop a consistent framework that
characterizes the relationship between the flow rate and the
position and size of the obstacle.
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We present a parametric study from a statistical analysis
of thousands of simulations of gravity-driven granular flow
through an hourglass hopper. We place a circular obstacle
above the bottleneck and investigate how it affects the flow rate.
All simulations consider circular particles passing through a
neck of width D0 of an hourglass-shaped hopper with angle
θ with respect to the vertical, as shown in Fig. 1. A circular
obstacle of diameter D is placed centrally at a distance H above
the bottleneck. Initially the particles are placed at the top of
the hourglass. Gravity ensures that the particles flow through
the bottleneck. We enforce periodic boundary conditions by
replacing the particles that have reached the bottom back to the
top of the hopper. The average number of refilling particles per
second (mass flow rate over particle mass) is used to measure
the flow rate J .

The particles interact with each other via elastic, viscous,
and frictional forces, and are subject to gravity. Details of
the particle-based model are presented in Ref. [10]. The
parameters of the model and their units are as follows: normal
and tangential contact stiffness kn (N/m) and kt (N/m), friction
coefficient μ, normal and tangential coefficients of viscosity
γn (1/s) and γt (1/s), particle mass m (kg), particle diameter
d (m), and gravity g (m/s2). The dimensionless flow rate
J/J0 is given as a function of the geometrical parameters
θ , D/d, D0/d, and the contact parameters μ, a0 = ω0/γn,
a1 = kt/kn, a2 = γt/γn, and a3 = ω0/J0, where J0 = (g/d)1/2

and ω0 = (kn/m)1/2. The contact parameters were chosen
as follows: a0 = 0.71 gives a restitution coefficient of 0.04
[11]; a1 = a2 = 0.1 leads to a Poisson ratio of 0.3 for a
hexagonal packing [12]; a3 = 0.005 guarantees overlaps of
lower than 5% of the particle diameter; and μ = 0.2. The
default geometrical parameters are D0 = 6.3d, which is wide
enough to avoid clogging, H/d = D/d = 9.46, and θ = 30◦.
Each simulation runs for 34 000tc, where tc = 2π/ω0 is the
characteristic collision time. The system consists of 1670
particles, which is enough to guarantee steady flow and a filling
height larger than three times the neck diameter; we observed
little variation in flow rate with a change in the number of
particles.

Simulations with no obstacle showed that the flow rate
depends on the neck diameter, according to the Beverloo
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FIG. 1. (Color online) Snapshot of the simulation of gravity-
driven granular flow with no obstacle (a), and with an obstacle of
6.3d diameter (b). The color encodes particle speed (darker is faster).
The parameters governing the flow are hopper angle θ , bottleneck
width D0, angle of convergence α, and aperture A created by the
obstacle.

relation that is derived from the hourglass theory [13]:

J

J0
= C

(D0/d − c0)β

sin1/2 θ
, J0 = (g/d)1/2, (1)

where β = 3/2 for two-dimensional (2D) flow [14], and C =
1.4 and c0 = 3.2 are fitting parameters as shown in Fig. 2, the
latter one reflecting the transition from jamming to continuous
flow. To investigate the effect on the obstacle on the flow
rate, we fixed the neck diameter to D0 = 6.3d, which leads to
continuous flow when no obstacle is present.

Two series of simulations are performed to investigate the
effect of placing an obstacle on the flow rate. In the first series
we fixed the height of the center of the obstacle to 9.46d

above the center of the bottleneck and varied its diameters.
Figure 3(a) shows the flow rate versus obstacle diameter D

for different hopper angles θ . For each θ the flow rate peaks
at a finite value of obstacle diameter that we call the optimal
diameter. As the angle of the hopper increases from 26◦ to
55◦, the optimal diameter increases while the peak flow rate
decreases. In the second series of simulations we investigate
how the flow rate depends on the height of the obstacle. We
fixed the diameter of the obstacle to 9.46d and varied the height
H . The results are shown in Fig. 3(b). For each hopper angle
there is an optimal height for which the flow rate is maximal.
Again, as the angle of the hopper increases, the peak decreases,
and the optimal height becomes smaller. The main difference
between both cases is that, when the height of the obstacle is
varied, a higher flow rate is reached than when changing its
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FIG. 2. (Color online) Flow rate without obstacle vs neck width
in (a), and vs hopper angle using C∗ = C(D0/d − c0) in (b); the best
fit is in agreement with the Beverloo relation, Eq. (1).
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FIG. 3. (Color online) Flow rate vs obstacle diameter in (a), and
vs obstacle height in (b), for different values of hopper angle θ .
In (a) the center of the obstacle is 9.46d above the center of the
neck. In (b) the obstacle diameter is 9.46d . Differences in initial
conditions cause statistical fluctuations, so for each parameter suite
the simulation was repeated 32 times with the particles in different
initial positions. The error bars indicate standard errors. In (c) we
show the ratio between the peak flow rate and the flow rate without
an obstacle vs hopper angle θ for both cases. The peak flow rate vs
angle of convergence is fitted in (d) using the Beverloo relation with
effective gravity g∗ = g cos θ .

diameter. The ratio between flow rate at peak with an obstacle
and flow rate without an obstacle is shown in Fig. 3(c). For a
hopper angle of 26◦ there is a 5% improvement of flow rate for
the optimal diameter, while it improves 16% when the height
is optimized.

The main conclusion of these two series of simulations is
that for hopper angles below 40◦ there is only a very narrow,
specific range of heights and diameters of the obstacle where
the flow rate is higher than that the flow rate without an
obstacle. More support and evidence for the optimized flow
rate due to obstacle placement before an outlet opening can be
found from numerical simulations of panic-driven pedestrians
[4], experiments with ants [9], and more practically in cattle
herding where the stockman has the role of the obstacle [8].
The contribution of our simulations is to show that obstacle
placement needs to be optimized for improvement in the flow
rate.

Now we question whether or not the hourglass theory can
be used to describe the dependency of the flow rate on the
height and the diameter of the obstacle. Figure 1(b) shows
two important control parameters for the flow rate with an
obstacle. The first one is the aperture, which is defined as the
minimum distance between the obstacle and the hopper wall.
The second one is the angle of convergence α. We extend the
lines of the walls to meet at the apex below the bottleneck, and
then we draw a line tangent to the obstacle passing through
the apex. α is the angle between this line and the extended
line of the nearer wall. Simulations show that the optimized
obstacle splits the bottleneck into two smaller hoppers on either
side of the obstacle. This decreases the effective hopper angle,
enabling an improvement on the flow rate according to Eq.
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(1). Let us assume that each one of the hoppers has an angle
α, and that the particles are driven by an effective gravity
of g∗ = g cos θ . Using Eq. (1) these two assumptions lead
to J/J ∗

0 = C∗ sin−1/2 α, where J ∗
0 = (g∗/d)1/2. Figure 3(d)

plots the peak flow rate versus the angle of convergence for
simulations with constant obstacle diameter and height. We
found good agreement with the hourglass theory. This proves
that the main benefit of the obstacle is to produce a less
convergent flow, which leads to higher flow rates.

But the convergence angle is not the only parameter
controlling the flow rate. The variation of the flow rate around
its peak value is governed by the aperture, i.e., the distance
between the obstacle and the hopper wall. If the aperture is
too narrow, the particles get clogged, leading to a decrease of
the flow rate; if the aperture is too wide, the space between the
obstacle and the bottleneck gets congested, leading to a flow
rate lower than the flow rate without an obstacle. Between
these two regimes there is a narrow range of apertures that
produce the waiting-room effect [7], with reduction of density
above the bottleneck and a subsequent increase in the velocity
of particles, and therefore in flow rate.

The hourglass theory assumes the density as a constant
parameter of the problem, so that it cannot be used to
capture this waiting-room effect. We will extend this theory
by constructing a microscopic traffic-flow model that describes
the dependency of the density, velocity, and flow rate with the
aperture. Traffic-flow modeling assumes that in the steady state
the mean velocity V of the particles (car or pedestrians) is a
function of the density ρ [3,15]. The flow-rate density (mass
flow rate per area) is calculated as the product of the density and
the normal velocity, j = ρV , which implies a dependence of
the flow solely on the density. For the hourglass the flow rate
(particles crossing the bottleneck per second) is the integral
of the flow-rate density over the bottleneck area D0 divided
by the particle mass m. This leads to J = j̄D0/m, where j̄

is the mean value of j over the bottleneck. Now we will assume
that the fluctuations of density and velocity at the bottleneck
are uncorrelated, so that ρV = ρ̄V̄ . Under this uncorrelation
hypothesis, the flow rate may be approximated by that which
we call the microscopic flow rate:

Jmic = ρ̄V̄ D0/m. (2)

We will check the validity of this hypothesis. First, the mean
values of density and velocity are calculated by using a
rectangular area 0.025D0 above and below the bottleneck. The
density is calculated as the mass of particles in this rectangle
divided by its area. The mean velocity is the average or the
vertical velocity of the particles over this rectangle. Confident
values of these two quantities are obtained by averaging over
800 snapshots of the simulation. The velocity and density
are normalized by V0 = (gd)1/2 and ρ0 = 2 cot 60◦md−2, the
latter being the density of a hexagonal packing.

Figures 4(a) and 4(c) show the time average of both mean
density and mean velocity versus aperture. We can distinguish
three flow regimes: Zone I corresponds to apertures below
4.3d. In this zone the region between the bottleneck and
the obstacle is loosely packed and the particles are relatively
free and unconstrained. This regime is characterized by an
increase of the velocity as the density increases. This is similar
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FIG. 4. (Color online) Mean velocity (a) and mean density (d) at
the bottleneck vs aperture. The lines show the multilinear fit of the
data. The squares in (b) show the flow rate J vs aperture calculated as
the number of refilling particles per second. The circles in (b) show
the microscopic flow rate Jmic calculated from Eq. (2). The lines in
(b) correspond to the model using the fitting in (a) and (c). Each
dot in (d) shows the mean velocity vs mean density in a snapshot
of the simulation. The circles show the time average of both density
and velocity at different apertures. The bilinear fitting is performed
using the slopes obtained from zones I and II in (a) and (c). Zone III
corresponds to the hysteresis loop shown in the inset.

to the free-flow regime in traffic flow, where an increase in the
density of cars leads to an increase in flow rate.

Zone II corresponds to an aperture of 4.3d–4.5d. We call
this regime the congested zone, because it resembles the regime
in vehicular flow where a further increase in the density of
cars leads to an abrupt decrease of the mean velocity. The
transition between zones I and II is where the waiting-room
effect takes place, leading to peak flow rates. This effect is
characterized by a change in the relationship between velocity
and density. While the density is still increasing with an
increase of aperture, the velocity in this zone changes from
increasing to decreasing due to congestion at the bottleneck.

A different transition is observed around A = 4.5d. When
the aperture passes this value the density stops increasing and
reaches a constant value ρmax = 0.64ρ0, while the velocity
changes from decreasing to increasing. This corresponds to
zone III, which we call a non-Markovian zone, because there
the mean velocity does not depend on density but on the
history of particles. Here the particles crossing the bottleneck
“remember” whether they collided with the obstacle, because
if they did, their velocity is lower than if they had not collided.

The three regimes can be fitted using a multilinear relation
of velocity and density versus aperture. These relations, along
with Eq. (2), are then used to calculate the dependency of
microscopic flow rate on aperture, as shown in Fig. 4(b). We
see that the microscopic flow rate Jmic is close to the flow rate
J given by the number of refilling particles per second. This
supports the validity of the uncorrelation hypothesis used to
derive Eq. (2).

The optimal aperture corresponds to the point where the
congested zone (zone II) and free-flow zone (zone I) meet.
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This shows that the waiting-room effect resembles the phase
transition observed in vehicular traffic. This transition is
presented in Fig. 4(d). We can recognize the transition at
around (Vc,ρc) = (3.3V0,0.51ρ0). The best fit of our velocity-
density relation is a bilinear relation, which can be used to
express the flow rate around the peak value as J/Jpeak =
(ρ̄/ρc)[V̄ (ρ̄)/Vc]. Since the flow rate at the peak was given
by Jpeak = C∗(g cos θ/d)1/2 sin−1/2 α, the dependency of the
flow rate around the peak can be expressed as

J = C∗
√

g cos θ

d sin α

ρ̄(A)V̄ [ρ̄(A)]

ρcVc

, (3)

where ρ̄(A) and V̄ (ρ̄) were fitted in Figs. 4(b) and 4(d). We note
that this bilinear velocity-density relation is in stark contrast
to previous models of traffic flow where the velocity-density
relation is monotonically decreasing [15]. This difference
appears due to the presence of particle-obstacle collisions in
the former and a lack thereof in the latter. Also note that such a
velocity-density relation with two regimes does not capture the
additional transition from the congested to the non-Markovian
regime mentioned above. In the latter regime the velocity

depends on aperture rather than density, which stays constant
around ρmax. This regime is characterized by minute hysteresis
loops in the velocity-density relation. These loops differ from
the ones observed in traffic flow, which lead to a return
transition from congested flow to free flow [16]. It is interesting
and unexpected to observe such hysteresis loops with this
completely deterministic model of gravity-driven particles.

To conclude, we have shown that an obstacle in an hourglass
can increase the flow rate by up to 16%. The optimized obstacle
splits the flow into two less convergent hopper flows. Here the
relation between peak flow rate and the angle of convergence is
consistent with the sin−1/2 relation predicted by the hourglass
theory. The phenomenology of the waiting-room effect was
described as a transition from free flow to congested flow that
fits well to a bilinear velocity-density relation.
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