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Chapter 1

INTRODUCTION TO FINITE ELEMENT
MODELLING

This course aims to provide a modern formulation of finite element analysis for modelling engineering
systems. The main idea afoddling is to use physical principles and mathematics to arrive at an
approximate description of phenomena. These phenomena span a wide range of situations in civil
engineering that demand predictive capabilities. A few examples: material behaviour ofrhadan
materials, stability of structures, and transport of heat, water, or contaminants. In structural engineering,
one of the responsibilities of the design engineer is to use predictive tools to devise arrangements and
establish proportions of membérso withstand, economically and efficiently, the conditions anticipated
over the lifetime of a structure. In environmental engineering the description of phenomena is used to
improve the natural environment, to provide healthy water, air, and soil for hamarrezosystems, and

to remediate pollution produced by human activities.

Mathematical modelling complements methods based on empirical experience. Empiricists base their
formulae and design decisions on experimental analysis, and this approach candeenpetitive and
effective if the analysis is carried out properly. Repeatability, rapidity, and reliable accuracy are among
its strengths; but the major disadvantage of the empirical method is that it usually yields only one data
point of information inthe spectrum of the physics involved. If the system is changed from the
originally tested specimen (perhaps in dimensions, materials, or loading conditions), the experiment
needs to be repeated on the new structure. The costs can be prohibitive.

Experimens should be used as the starting point of any investigation. Results of experimental tests
provide a window of insight, and hence clues to the behaviour of the structure and the phenomenon
governing it. The best engineering approach to a problem is teeen@mthematical methods based on
mechanical principles anéxperimental insight, and to use empirical methods for the ultimate
verification of any theoretical or numerical solutions obtained through modelling.

Development of mathematical models leada st of differential equations callgdverning equations

In just a few cases it is possible to solve these equadioalytically. With analytical expressiona/e
achieve explicit derivation of unknown variables in terms of the known parameters uskifdgqowveh
mathematical functions. These expressions cdosed form solutionsand often they make strong
assumption$ such as perfect elasticity, and extremely simplified geometry. But real engineering
problems often require a detailed description of teengetry of systems, like the cross section of a
beam or a retaining wall; or they may be insoluble without a complex specification of material
behaviour, perhaps with ndimearity or irreversibility. In these cases elegant analytical solutions are not
avdlable. We usenumerical analysisnstead,which involves the use of algorithms implemented on
computers to arrive at approximate solutions of the governing equations, to the necessary degree of
precision.

Thanks to the rapid increase of computer powemaerical analysis is one of the fastgebwing areas
in engineering. Finite element modelling is among the most popular methods of numerical analysis for
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engineering, as it allows modelling of physical processes in domains with complex geometry and a wide
range of constraints. The basic idea of finite element modelling is to divide the system into parts and
apply the governing equations at each one of them. The analysis for each part leads to a set of
algebraical equations. Equations for all of the pamrtsassembled to create a global matrix equation,
which is solved using numerical methods. The beauty of finite element modelling is that it has a strong
mathematical basis in variational methods pioneered by mathematicians such as Courant, Ritz, and
Galerkn. The people who actually elaborated the method were engineers working toward greater
stability for fuselages and wings of aircraft. In 1943 Richard Courant (in the United States, having left
Germany early in World War IlI) came up with the first finilereent modelling using nothing more

than highschool mathematics. In 196@ohn Argyris (University of Stuttgart) established the
mathematical basis of the method to allow its application to problems beyond structures, such as seepage
analysis, heat transf, and longime settlement.

In the sixties, the golden age of finite element modelling, scientists and engineers pushed the boundaries
of its application, and developed ever more efficient algorithms. Nowadays, finite element analysis is a
well-establibed method available in several commercial codes. But numerical analysis research has not
stopped there! Mesfiee methods have been proposed, which do not require the mesh used in finite
elements. Discrete element methods have been developed with tbkiavwestigating systems of many

parts interacting via contact forces. Enthusiasm for these models has spilled beyond the borders of
science and engineering. They are now used in several computer games, and have inspired movies an
visions of interactive @mputer simulations such as The Matrix. Such fascinating advances in computer
modelling would be impossible without a foundation in finite element methods.

Welcome to the fascinating world of the numerical modelling!



Chapter 2

MATHEMAT ICAL FOUNDATION OF FINITE
ELEMENT ANALYSIS

In this chapter we introduce the key concepts of finite element analysis by considering few one
dimensional problems. The formulation includes three steps. The first step is the derivation of the
governing eqations of the problem along with the identification ofatsindary conditions The second

step involves the conversion of the governing equations imteak formthat allows the formulation of

the finite element theory. In the third step we subdivimladbmainof the system into a set of discrete
subdomains that are calleslementsand we define thehape functions; each element. By expressing

the seeking solution in terms of those shape functions, the governing equations are converted into a
globd matrix equation that is solved numerically. This is the essence of all finite element methods.

2.1: Governing equations strong formulation

The first step towards the mathematiocabdelling of any problem inscience or engineering is the
derivation of the differential equations of the quantity that needs to be solved. This quantity can be the
displacement on a building under wind load, the temperature @beatrical circuit, the distribution of

pore pressuren a dam, or the electnmagnetic field produced by amtennaln most of the case these
equations can be assembled using three different parts.

1) Kinematic equations describing the gradient (derivative) of the variable we want to solve. For
example: thgradient of the displacement is the strain, and the gradient of the head is the hydraulic
gradient

2) Balance equations which are the mathematical expression of the conservation laws in physics.
Conserved quantities are usually mass, momentum, and eR@rggxample, for structures in
equilibrium, the conservation of momentum lead to thealled static equationisThe Naiver
Stokes equations in fluid mechanics involve conservation of mass and momentum.

3) Constitutive equations which represent the matdrigroperties of the system of study. These
properties are usually derived from experimental tests. In structural mechanics the constitutive
model is the stresstrain relation which is given in terms of a stiffness tensor. In transport of heat,
radiation @ pollutants the constitutive models consist on transport coefficients, such as permeability
in seepage flow, or conductivity in heat transfer
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Figure 2.1 From left to righti(a) the Leaning Towenf St Moritz (b) the landslide displacements in the lower
200 m,(c) the mathematical model to predicting landslide displacement; and (d) free body difgrslide®
(Puzrin, A. M. & Sterba, I. (2006). Geotechnique 56, No. 7] 489)

To illustrate the derivation of the governing equatideisus consider a simple mathematical model for a
complex engineering problem, as shownFigure (2.1). This is relaéd to a landgle displacement in
Switzerland, which have led tbe leaning of the St Moritz Tower: the displacement of the inclined slope is
constrained by a rock outcrop along the Via Maistrahasvn in the~igure (2.1). Geological survey Isa

shown thatthe deformation occurs above a sliding layer, and it is constrained by a rock outcrop at the
bottom. For simplicity, we assume that the deformation ufk) accurs in the directionfdhe slope. We

want to derive the governing equations of u using the method of infinitesimals. First we divide the slope in

slides perpendicular to the sl ope directithen. L €

slide initially placed at the position x. The
which means, very small.

The kinematic equation is nothing more than the definition of strain:

\
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where o6s=bhamkeanhe expression is valid whoambepx i
converted into a differential equation using the definition of derivative
g du 2.1)
dx

This corresponds to the kinematic equation of the problem.

Now we will construct the balance equati@saming that the system is in equilibrium. Since the problem
is onedimensional, the equation of conservation of momentum corresponds to the balance of forces in the
x-direction:

G (%) h @(x+px) (2.2)

where O is the -ditediamnsasokaown as earth pressurés lthe shaar stress acting
on the sding layer, andLg =9 h s the gravity force, andis the unit weight of the soil. EqR.2) can
be rearranggas

O (x+px) B¢ x

2.3
= n (2:3)
Sinceqxs infinitesimal, the equation above can be converted into
du_ _ f(x) (2.4)
dx

where f(x)is the external loadsapply to the systenthat in this caseconsists ofa gravitational load
minus theshearstressat the bottom of the boundary. This equation corresponds to the static equation of
the problem.

We notice that Eq(2.1) and(2.4) are not sufficient to obtain the displacement profile of the slope. We
still need an equation that relates stress and strain that is pretisetpnstitutive equation of the
problem:

g =E (2.5)
E is the Youn§ soduls that gives the material property of the soil. It can depend on the position for

nonhomogenousoil, or on the stress fmonlinear materials. Now we can combine Eg.1), (2.4) and
(2.5) to obtain thegoverning guationof our problem

da_du §
—SE= = . f(x 2.6
dx¢ dx 2 ) (9)
If the soilbehaviouris not lineal, (i e . E does not depend on () this

obtain the displacement along the landslide. We should not forget that every time we integrate we obtain
an integration constant, which lead us to an indeterminate solution of olemrdb order to obtain a

single solution we need to complete E26) with the secalledboundary conditionsThey correspond

to the condition of the unknawvariable u at the boundary of the domain. Since our slope is constrained
by a rock outcrop at the bottom, and free to move at the top, the boundary conditions are

10



u(0)=0 and %

(2.7

x=L

where L is the length of the landslidghe first condition is calledssentiabr fixed boundary condition.

It states that the displacement at the bottérihe slope is always zero. The latter one is catigiral,

or free boundary conditigrandit comesatfter using Eq(2.1) and(2.5), and the fact the
of the landslide. It is left as an exercise for the reader to show that if the soil is homogeneous and linear

(E= cte) and the top boundary is la¢ tcritical state U =nf1 t, whereljn =9 N s the normal sess

d i s the angl e), anfanalitical solutionexists forfEq(2.8) with Isooniddry condition
given by Eq(2.7)

u(x)=o( S i n2(EU) C)OX(SZL(— %j 29)

Note that to obtain this analytical solution we require several strong assumptions, such- as one
dimensional deformation, linear elastic soil, and a rsfidayer of zero thickness at the critical state. In
practice we cannot alwaykepend ortoo strong assumptions. If we relax the assumptions the resulting
governing equation does not have analytical solution. That is where numerical solutions takegplace. E
(2.6) for nonlinear materialbehaviourcould in solved replacing the derivatives by finite differences.
This leads to a set of algebraic equations thatlearesolved numerically. This is the essence of the
finite differences method that is useful for systems with simple domains. Yet severalvoekl
problems involve complex domains and ftiwte different method become problem dependent. The
boundary onditions are much simpler to plug fimite elementmodelling Here is where the power of

the finite element modelling appears, as it provides a unified framework for isgithe governing
equation of a wide range of problems for any kind of domains anddary conditioa In the section

2.3 we present the key concepts faiite elementmodelling which will allow us to understand the
general idea of this method.

2.2: Euler Bernoulli Beam Theory

The EulerBernoulli beam theory is a simplification of thedar theory of elasticity used to calculate the
deflection produced by applied loads. As any theory, it has a certain number of simplifications:

(1) The loads arperpendiculaonly;
(2) The deflection are small; and
(3) Plane sections of the beam r@malane and perpendicular to the longitudinal axis.

Derivation of the bending equation of the EuBarnoulli theory will be presented here.

>
X

QX M(x)
u(x) ( ; >M(x+ X

ulx+ o Q)

y Q(x+ )X
W(x)
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Figure 2.ZKinematic Variables (left) and free body diam (right) of the EuleBernoullibeam.
Kinematic equations
The rotation of the infinitesimal element is related to the deflection at their @egase 2.2) by:

d u(x+gpx-) u:(_x
' P X c

(29)

The derivation of this expression used the assumption thatotagons are small enough so that
d° sg %

Curvature is defing as the inverse of theadiusof curvature} of the beam(Figure 2.2). The exact

calculation of curvature is obtained from differential calculus:

1 |dPurdx|
o 3R !

) gl+(du/dxy g

9

Since d=du/ dx i s ass u methe-curvaturdocan benappréximatedaol | e r

d?u ad

a° =

dx’  dx (2.10)

Thus we obtain thkinemaic relation between deflection and curvature

d?u
dx* (2.11)

Balance equation

The free body diagram of the infinitesarelement is shown in Figure 2Q(x), M(x), W(x) represent
the shear force, the moment, and thedagoer unit of length at point X¥or this problem we need to use
both balance of forces and balance of moments. By balancing the forces-ditbetipn we get

Q) - Q(xtpx )- DV
Theaboveequation resultinto
aQ_

dx
(2.12

Now we use the balance afgular momentum
- QM)Ax+M(x+px ¥ M( X )%Xw

The last term vanisieince it is a second order infinitesimal, and the resulting equation is

M _q (2.13)
dx
12

t

h a



Eqg. (2.12) andEq. (2.13) @n be combined to obtain the balance equation ofaghdibg problem

d’M
Constitutiverelation

This is the relationship that connects moments to curvature
M=Ca

Using elasticity theory, it is possible to show that the constant is the product between the Young
modulus of the material E and the moment of inertia of dless section area |. Therefore the
constitutive relation can be written:as

M=E | a (2.15)

Finally, if we combine the constitutive equation with the kinematics and the balance equations we obtain
the governing equation of the problem:

d d’u 6
S Bl BW
dx? dx® °

)
Lol ?ﬁnmo

2.3: Weak formulation

We are about to introduce the weak formulation of the governing equations. In structural mechanics, this
formulation is equivalent to the principle of virtual work. This principle plays a very vital role in
structural analysis and in the finite elemfartulation of partial differential equations

We want to solve the governing equation plus boundary conditions:

ggd— % fx),  u(0)=0, ij = (2.16)
dx =+ d x=L

The solution above requsd¢o have a second derivative, so that it need to be continuous and with no

corners. We want to relax this assumption, and find solution that beirigtpuouscan havecornersi. e.

discontinuities in the derivativeLet us define theest functionu'(x), as continuous andpiecewise

differentiable satisfying theessentiaboundary conditionsf the governing equatioffhe meaning of this

test function may appear obscutethis pont of the book, but it will be clarifieavhen we arrive to the

weak formulation. The equation above can be written as

L ~

o}

X)dx=0 21

Oedx(; dxg Lt'u() 217
Now wewanttogér i d of the second derivatives to all ow
the new equation. With this aim wei | | Ai ntegrate by mpearduationFirsthe f i

werecalt he 6 p wu o diferentiblcalculus
d _dv dw
&(VW)
Using v=Edu/dx and w=uve obtainthe following identity
13



ggg@ 8—d Eedu i du du
dx¢” dx  +dx 5( dx dx
this is rewriten as
di_du g_d _&u. 5du du
—ak— B =— Exu 2.18
dx{:édx 8 dx 5( =dx dx (218
Replacing this equation intéq. (2.17) we get
L
~£d3a_du . 6 du du
> BaholhahalliE 5’ 219
Oneithg%d_Xu E ()U (X) x-—tg (219
Integrating the first term
du U Y te dudd . _
Eu (x){0 R o U (%) @‘L';x_c

and using the boundary condition given in Efl6) on u and Uwe obtain the sealled weak
formulationof the problem

du d
rEEd—;‘d—“ - 00U (%) % (2.20)

The reader may ask, whdoes itmear? Whyit is weak?Why is it important?It is called weak form
because the conditions of the seeking solution u(x) are weakeinttfaEqg. (2.16): In the weak form,

our solution does not need to have continuous second derivative. We only require a solution that is
continuous and differentiable, so tive¢ can seek pieewise linear solutionThe weak form is also of

great importance in structunamechanics because it corresponds to an important principle in mechanics:
To show thatusing Eq(2.1) and(2.5) we can writeEq(2.20) as

L

Eio fa (2.2

0
The first term looks like the energy done on the system by internal forces after a virtual displacement
u'(x) consistent to thessentinboundary condition. The second term is the energy given by external
forces due to this virtual displacement. We have found that the weak formulation corresponds to the
well-known principle of virtual work This principle states that the equilibrium smotof the system
u(x) is such that the internal work equals the external virtual work for any displacement consistent with
the boundary conditions.

2.4: Finite Difference Method

Until now we haventroducel the strong form and the weak formulatiorntioé governing equatienThe
strong form can be used to solve numerically the equation using the method of finite differences. The
weak form is the basis of the finite element formulation.

I n the Afinite differ enceo indfterendiad equatonsssosbught at o n
discrete points within the domain investigated. The domain is divided in rectangular grids and the
derivatives ar@pproximated b finite difference

14



du _ u(x+px-) L
dx P X (2.22)

The second derivative can be also approximated by a finite difeeeuression

du

o

L .

d u - dxl, Xy (2.23)
dx pX

Using both equations above, we obtain a finite difference expression for the second derivative
dzu._ u(x+px-) 2 u( x) (2.24)

dx?® X

We can replace the above equation into Eq. (2.6) to obtain

f
- 2 - = 2.2
u(x+px ) +2u ( x-) o (229

Then the governing equations are converted into algetbreguations, which are completed using the
boundary conditions. Thuspmintwiseapproximation is obtained. The beauty of this method is there is
that the derivation of the algebraical equationstisaightforward Unfortunately, this feature often
camot outweigh its main disadvantage, namely that the method is not very tolerant of irregular
boundary conditions as shown in Fig@&. The other problem is that the conversion of the boundary
conditions into algebraical equations is not always easytanedds special treatment in each case.

(a) ‘

Figure 2.3 Discretization of a turbine blade using (a) finite difference method and (b) finite element method
[after Hubner, 1942]
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2.5: Finite Element Method

A more flexible technique imti s r espect is the Afinite el ement
or continuum is discretised into smaller gelgions or into what are more commonly knownfinge
elements A shape functions defined in each discrete element. Then we seaeduian as a linear
combination of the shape function
Ngof
u(x)=8a uN, (x)

i=1

Where the sum goes over all/l i dle gthrereveois, iécewise e e d
approximation to the governing equation is arrived at, whose solution @nethtby finding the

coefficientdd; . Very complex shapes can be modelled with relative ease (FigRe) using this

method. Furthermore, by introducing intermediate points along element lines, it is even possible to
ideally moeel curved boundaries. Next section introduces the basic concept of finite element method in
one dimension.

We are ready to introduce the brilliant idea of Galerkin (Russian Mathematician and Engineer) to find an
approximate solution of the weak form difet governing equation®Ve will introduce the Galerkin
methodby formulating the finite element method in one dimension. The basic procedure is essentially
the same for two and thremensional problems:

1. Decompose the domain into a set finite elements;
2. Define a set ofhape functios, each one sitting in what are calteztiesof the finite elements;
3. Unknown field variable u(x) is expressed as a linear combination of the shape functions; and

4. The governing equation is transformed into a matrix egudhat is solved to obtain coefficient
of the linear combinatian

Domain Discretisation

The domain of the slope problem is the interval [O,L]. Let us divide the interval intelEentge;,

e, 6, &). These elements will be joined by fimedes(xo, X1, X2, X3, X4). We seek and approximate
solutions at the nodes givéy u=u(x), i=0,1,..4. The natural question is how many element we need to
use. The general rule is that as metements we use more accurate will be the solution but more
calculatiors need to be done. But in the practice we need to use smaller element in those part of the
domain where we expect the solution will change more abruptly. In analysis of structures this happens
near to the holes or the interfaces where diffebedies interact.
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Figure 2.4 Definition of hat shape function in finite element analysis

Global shape function

After discretigtion we se& for a solution of the E(2.20) on the domain. The main idea is to sit a
shape functiorin each one of the nodedigure 2.4) and then express thertual displacemengas a
linear combinationEach shape function will account for deformation at one node, and the total virtual
deformation is expressed as a linear combination of the shape functions. In paEgy2&0) will be
valid for uf(x)=N;(x) (i=1,2,3,4). Thus Eq. (20) is written as:

L

ﬁE@ﬂ - N, (x))dx=0 wherei=1,2,3,4 (2.26)

dx dx

0

Linear combination
The function u(x) is expressatsoas a combination of trghapdunctions:

u(x)=uN, () + u, N, (x) +u; N, (x) + u4N4(x):£_ u,N; (x) (2.27)

i=1
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If we use shape function as that shown inFigure2.4,iti s easy tosthe Hefomnatioprhah t U
the "-node.

Global matrix equation

Replacing Eq(2.27) into Eg.(2.26) we obtain aglobal matrix equation

a4

a K,u=F (2.28
i=1
- - dN.
k= N O g (2.29
o dx dx
L
F=p{x) N, (x)dx (2.30)
0

The FEM solution consists of calculating the elementh@dt 6 st i f f n 2B andrthetector x 6 E

"0 . It is left asan exercise for the reader to show that if E{xE, and f(x) = fo, the global matrix
equation is given by

2 -1 0 Oéy g 2 o

e u u
Eél 2 10 3% & f px 1;‘ \UKu F (2.31)
@€0 -1 2 -dleu, U -

e € u u

e0 0 -1 1@, ¢ 1B 4

We notice that our smart selection of the shape function concentrated at the nodes allow us to obtain a
banded matrix with zeros outside of the hahkis simplifies the caldation of the inverse. The finite
element programs havesalverthat is in charge of inverting the stiffness matrix to find the solution at

the nodesis

u=K *F (2.32

Finite element solver

Most of the computational work involved in Finite Element Analysis lies in the inversiom stitfness

matrix. The part of the program thdoesthis inversion is calledolver. The first steps that the solver
needs to check is whether the determinant of the matrix is different from zero. If it vanished the matrix
is singular, which means that it cannot be inverted. In other words, wet thavea unique solution of

the problem, or we may not have any. Singular matrix appears when the boundary conditidnedi not
posed This is the case for example, when the boundary conditions are free at both ends of the domain.
Singular matigesappear also when the material properties of the materials such as Young modulus of
thickness of the materials are entered with zero valilgs is a common mistake of beginners.

The second problem that may be encounter by the swiveroblems with largenatricesis that the
computer needs too much time to invert the matrix. This usually happen when the elements are not
properlyindexed leading to sparse matrices. Ideally we want that the eleroéthe stiffnesamatrix
vanishabove a certain distancem the diagonal that is called bandwidth.

A typical finite element program consists of three basic umits:processoy processorand post

processor In the preprocessor the geometry of the problem, the boundary conditions and material
18



parameters arentered into the program. The processor generates the finite element mesh, assembles the
stiffness matrix, and inverts it using the solver. The last component of the program is {hpessor

that computes the solution and its derivatives and priptadrthe results. In this book we will focus on

the theoretical aspects of the implementation offithiee elementsithin the processor. We focus not

only on structural problems, but also in mstructural cases such as seepage analysis and thermal
conduction problems. We will study the ®salled static solverghat give solutions of static problems.
However, the reader shall bear in mind that there are solvers for many situation, such as buckling
analysis and dynamics systems.

2.6: Finite Element for non-structural problems

The above example was related to a simple example of-dior@msional structure. We will show that
here that similar governing equations can be derived for other kind of sitatgond structural
mechanics.

Let us start withhe equation for the conduction of heat. Here the unknown variable tisntiperature,
which is given in terms of the position. Tkimematic equatiolcorrespondto thetemperature gradient,
for onedimensional flowit is given by

pr=dT (2.33)
dx

The constitutive equation corresponds to the Fourier law, which states that the fleat ©f proportional
to the gradient of temperatuog a factor k that is the conductivity

g=- k €5 (2.39)
Then the balance equation correspond to the principle of conservation of mass, that thatsta¢ heat
generated in an infinitesimal el ement f(x)®pxA e
A ( g ( x #g@@), written in differential form
dag _ f(x) (2.35
dx
Putting all equation together we get the same equation as before
d§ dT &
— % =_f(x 2.36
dx¢” dx o ) (239

Similar equations are derived for seepage flow by changed temperature by hydraulic head, and f(x) by
the amount of water generated inside thenelatary volume. In both case the fixed boundary condition
correspond to a fixed heat/temperature at the extreme, and the free boundary condition correspond to
impermeable/isolated boundaries.

2.7: Variational principle : minimal form

The principle of virial work can be derived from a variational formulation. This formulation leads to a
wide range of numerical methods to find equilibrium configuration of complex systems, such as the
configuration of DNA molecules. One of these is the Finite Element Mettatdve have derived from

the virtual work principle.

Here we present an alternative to derive the weak formulation which is based on energetic principles.
This formulation is useful when we are interested in the equilibrium of the system, which isehe ca
19



most structural analysis problem. If we want to investigate the transient dynamics we need other
met hods. The definition define the O6energy6 as
function, and whose value is a real number, windhis case represents the energy.

1_edu B
E <+ fu)dx (2.37)
()ﬁ28 H )
We seek for the function(x) t h a t mi ni mizes the energy. This
derivativeod.
E).= E(”*UE,‘J') Ef (2.39)

Whereu'(x)i s a o6test functiond that satisfies the bec
ReplacingEq. (2.37) in Eq. (2.38) we obtain:

ﬁE%%— fu')dx= 0 (2.39)
0

This corresponds to the weak form. We can also derive the strong formulation f(2.3). By
integrating this equationytparts

du du t4a_du . .. O, . dyt
0= E——— fu)dx = off— u +Hu @x+u( x—
ﬁ dx dx U )dx oC dx i‘l ( ))djo

Using the boundary condition it leads to

du & Q
— Hf(x dx=0
Xg Lgx)x

wh
v(')?ﬁng)o

X

9]

0

Since this equation is valid for any virtual displacement we can assume that the integrand vanish in all
points

d a_du B
&85& g( x)=0 (2.40)

We can conclude th#éhe governing equation of an engineering problem can be written in three different
forms the strongform, whichis useful in finite differences method; the weak fomtich allows the

finite element formulation; and the minimérm, which allow numericalsolutions using variational
methods.

Problem1

This question is related to the governing equation of the constrained landslide problem
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du du

—=-f u(0)=0 and — =
(0] dX2 0 ( ) d -
Where g is the Young modulus of the soilg,i$ the exernal forces per unit of length, and u(x) is the
displacement we want to obtaFind the analytical solution of this equation. Here we will compare this
result with the numerical solutions from the finite difference method and the finite element method.
Divide the space domain of the landslide in four eqesigced intervals with nodes

X,=0, X, DX, X, =2[X,... % =L,

Show that the finite different method (FDM) solution of the governing equation is given by

E

s P T Ty 22 -1 0 0 @"Il S 1:

f s P ¢l 2 10 gdn k1,
Tamop 6 Py €0 -1 2 -1éu, U E, 1
e e 80 0 -1 1dyg 1

Solve this equation by inverting the matrix, and find the displacement at the nodes.

Problem?2

For the differential equation in Quéast 2.1, Construct the global matrix equation using the finite
element method (FEM). You have to do the following

1) Calculate the integrals fori§ Ko, K13, Kag, Fi, and .

2) Using these calculations to show that the matrix equation is given by

¢2 -1 0 O&yp B

e u

$12 4 0@y, Jref £

€0 -1 2 -déu, u E, S

80 0 -1 1,y 1R
Invert the matrix to solve the displacement of the nodes.

Problem3

Compare the numerical solutions of both FDM and FEM with the analytical solution. What is the
numerical error of the solution in each case? How does the numerigalckange if the number of
elements is duplicated?

Hint: to compare the numerical solutions, you can work with dimensionless variables by assuming that

fOLZ/E 0:1 and L=1

Problem4

A soil layer of depthHover@rc k bed has a uniform unit weight
varies linearly with depth as shown in Figure 1 center. A uniform load P is applied on the surface. The
soil deforms due to the combined action of its weight and the surface load. Thealefome to the
surface load is called settlement.
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Figure 1
1) Derive the strong form and the weak form of the governing equations.

2) Plot suitable global shape functidd;(x)) for a finite element analysis with three linear etens.
Then derive global matrix equatistU=Ff or t he soi |l def or p&iE on i1
and E.

Hint: Check that in the case wheno=E;= E;= E3 your stiffness matrix becomes

Eez-l 0
—%1 2 4
pxE

80 -1 1

3) Derive the analytical solution for the settlement and compare with the nuhsetitgon of step
2.
Hint: write the Young Modulus as
E(x)=E, +ax

After deriving the displacement of the soil,

=P I+
S(X)= " In(1+ £ )

To compare the numerical and analytical soluticassume that the Young modulus at the
bottom of the soil layer is 30% larger than the one at the top.
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Problem 5

Vv

A
A, -

A steel bar (E=200 GPa) is fixed to a wall as shown the figure above. The bar is pulled b
horizontal force P=1000 N applied at the righteTarea changes from 0.0% tm 0.0064 .
The length of the bar is 1m. This problem is about finding the horizontal displacement alc
bar. It is assumed that displacements in the right direction are positive.

1) Derive the governing equations of thdatenation of the bar.
2) Derive the weak form of the governing equations.
3) Find the global matrix equation with three linear elements.

4) Derive the analytical solution for the deformation of the bar.
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Chapter 3
FINITE ELEMENT CONCEPT

In the previouschapter the basic concept of the finite element formulation was introduced, and the
stiffness matrix was derived using global shape funstidtthough the stiffness matrices of a few more
element types may be obtained using similar procedures, for gfes of finite elements, such as
continuum triangular or rectangular elements, the derivation isstnaightforward Therefore it is
necessary to develop a general procedure that can be used for derivation of the stiffness matrices of all
element typesThe general method consists of constructing the stiffness matrix of individual elements,
and then assembly them into a global stiffness matrix of the complete structure.

The aim of this chapter is to introduce this general formulation of the finite elem&thbd. The
procedure will used to form the stiffness matrix of two different element types, bar element and a
flexural beams element.

3.1: The Principle of virtual work

We recall theprinciple of virtual work for a singl element (bar or beg of the structure. The principle

of virtual work states that during any virtual displacement imposed on the boundary of an element, the
total work done by the external loads.¥\must be equal to the total internal work dong;\by the
internalstresseg ( .

Vvint :Wext

W= 0 (x) @

Wext:ﬁ u” (X)f(x)dV

where f(x) are the external load, afi{x) is the virtual strains produced by the virtudisplacement

u (X). The integrhgoes over the volume of the elemé&hit= AL, where A is the cross section area and
L the length of the element.

3.2: General Procedure in Finite Element Analysis

Most finite element computations in numerical analysis ¢@aphe following steps:

1. Chose a suitable coordinate system. While for many of the geome@r@teaiarcoordinate is suitable,
acylindrical coordinate system may be used for problems with axial symmetry.

2. Divide the geometry of the problem into a numbgfinite elements. Different types of elements may
be used to represent differences in physical properties. In structural mechanics, these can be beams
cables, plates, bricks, etc.

3. Use a suitable node numbering system for the elements of the structure.
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4. Derive the stiffness equations for all finite elements using the principle of virtual work (or the principle
of minimum potential energy). These equations are typically in the form of:

k®.u®=f"°

wherek® is the element stiffness matyix’ is the vector of element nodal displacements, fasithe
vector of element nodal forces.

5. Assemble the global stiffness matrix for the complete structure from the stiffness matrices of the
individual finite elements and assemble the global force vexform the global stiffness equations:

Ku=F

where K=S,K ® is the global stiffness matrixy is the vector of global nodal displacements, and
F=S.F°is the vector of global nodal forces.

6. Apply boundary conditions by eliminating exjions related to nodes with zero displacements.
7. Solve the global stiffness equations to obtain the unknown nodal displacements:

u=K™F
8. Compute the relevant physical quantities in all elements: stresses, strains, curvature and moments.

The Qlculation of the element stiffness matrik{, is an important step in the finite element
computations and therefore is dealt with in detail in the next section.

3.3: Calculation of Element Stiffness Matrix

A geneanl procedure is presented here that can be used for derivation of the stiffness matrix of various
finite elements. The aim is to relate thedal loadsto thenodal displacementsand thereby define the
element stiffness matrix.

Different types of elemesthave different numbers ofodesand different numbers oflegrees of
freedomper node and therefore the size of the stiffness matrix is generally different for different element
types. In most structural analyses the telegree of freedommay be regardeds the different modes of
displacement at each node. However, in general, the term "defgireedom” is applied to any nodal
guantity such as displacement, curvature, temperature, hydraulic head, etc. If the number of nodes in the
chosen finite elemens n,e and the number of degree of freedom per nodigy,ishen the total degrees

of freedom for the element isig= Nne® dor. The size of the element displacemeattor, u®, and the

element force vectorf®, is equal tagr and the size of the elemiestiffness matrixk® is equal

to Ngor® Ngor. The element stiffness equations are defined by:

k®.u® =1° (3.1)

The specific case considered here is amwde bar element shown kigure (3.1) . Similar to

the element of the constrained landslide, we asshatehis element can only carry axial loads.

The rotation and the deflection normal to the element axis are assumed to be zero. For this
element Re=2, dy=1, =2, and therefore the size of the stiffness matrx &
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Figure 3.1 Two-nodebar element
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Following are the steps required for calculation of the element stiffness rkétrix,

1. Chose local coordinate and node numbering systems that best suit the shape of the edéiment. D
the load and displacement associated with each defffeeedom at each node.

For the bar element iRigure (3.1) The local coordinate system is atpthe axis of the element.
Each node has a displacementand an associated for@g,measured along the direction of the
bar. Therefore the stiffness equations for the element can be presented as:

en, o klé, K, ug (32)
&, 0 ki kp Uy |

2. Select a suitable displacement function that uniquely defines the state of displacements at all points
within the elerent.

The aim is to express the variation of displacements at any point within the elemjpnt, t&rms of

the nodal displacements$. In many cases the variation of displacements can be approximated with
sufficient accuracy by a polynomial functionhd assumed polynomial function must contain one
unknown coefficient for each independent degree of freedom that exists at the nodal points:

UX )i x Ak () e flx) @
T(xg= f.0x) f,(xg € f (33)

a=ga .a €,af
wherea is the vector of unknown coefficients of the polynomial functioa. f(

For the specific case of the bar element, the total numbdegrees of freedom & Therefore
the polynomial function representing the variation of displacements must2hamknown
coefficients and it is a function afonly:

5,
¢

ux) =a +a .x 9 1x]eaz

wheref(x) =[1 ¥ "and a=[a a]".
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3. Relate displacesnts within the element to the nodal displacements.

The function u) represents the displacements at any point and therefore it is also valid at nodal
points. The displacements at the nodés,can be simply obtained by substituting the nodal
coordinatesnto Eq (3.3). For example for nodg, with coordinates of; andy;, Eqg (3.3) becomes:

us=u,)=f " x,) .a

If this procedure is followed for all other nodes attached to an elemer{8.8decomes:

eut o féxa Sgh()  fx) - f (X) @q
é . U ¢ SV
cuw U tBr  dh) ) o f () Ba,
ut=3 > = Z. : (34)
e u €: g : : : : g :
6l 0 & S : : :
éjndof H f Tg(ndof )a %(Xndof ) fZ(X ndof) e fndof (X ndaf %of
or
u®=Ca
The unknown coefficients, can now be determined froig.(3.4):
a=Cchu® (3.5
The polynomial coefficienta can now be @bstituted imo Eq. (3.3) to form:
u) = NE).u withN ) 7% ) C* (36)

Eq (3.6) relates the displacements at any point within the elemnéot, to the nodal
displacements)®. In general, the terms in the expressi(x) = f'(x).C*, called local shape
functionsin the finite element method, present a means of interpolation within the element through
which any quantity within the element can be calculatedh fits values at nodal points. Details of

the derivation of the shape functions for different element types will be given later.

For the specific case of the bar elemé@it,can be calculated and substituted in(&6).

C:Ql Xlg Cl= 1 g(z =Xy
& %0 xexEl 1
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é X2 -Xl (%]

é U

2X,- X, X, Xy A@X -X X X, @
Nx)=f'(x)C'=[1 x]€"™2 "t 72 "1 ux=2 L yBN O N, (x
(x)=1"(x) [ ]é L 1 0%G-x X, x, H[ (x) N, (x)]

7=

& u
e Xp- Xy X, Xy

X, - X X-X
2— andN,(x) =—

2" Xq 2" Xq

whereN;(X) = are called the shape functions.

The shape functits depend only on the geometry of the nodal points and the type of the
interpolation function used. The shape functioa&Nand N(x) vary linearly betweenpand % as
shown inFigure3.2. Note that the valuefdhe shape function k) is1 at pointl and zero at
point2. Similarly the value of the shape functiog(3) is 1 at poin2 and zero at poirit.

N(X)A
1 2
1
N1 N>
0 >
X1 X2 X

Figure 3.2 Linear shape functions

Therefore the displacement at any point within the element at (x) can be found using the
following equation:

UuCY=N, () U + N, ()L

4. Relate the strains within the element to the nodal displacements

The s txyaaanypwint Within the element can be related to the displacements at the pdint, u(
and hence to the nodal displacemenisThe strains can be expressed in the form of differentials of
the displacements. The exact form of the diffiéieds depends on the type of the element and may be
obtained from the theory of elasticity. Details of the exact form of the strains for different types of
continuum elements will be given later. In general the strains can be defined as:

A x=[u()] (3.7)

WherelL is a differatial operator, which depends on the problem we are analyingarticular,
L =d/dx for bars andl =-d?/dx? for beamsSubstitutingEq. (3.6) into Eq (3.7) results in:
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U( x Bu® L[N x ], (3.8)

WhereB is generally a function of. Eqg (3.8) representshe relationship between strains at any
point within the element to the nodal displacements.

For the specific case of the bar element the relation between the strain and displacement is given
by

g Qu
dx

d .
ThereforelL :&. B andUcan be calculated as follows.

a ON_edN,  dN,

g
dx Edx dx HE x-x X% -x
u

It can be seen that the axial strain in the bar element is independent of the coordinates, i.e., it is
constant all through the element.

5. Relate the sesses within the element to strains and to the nodal displacements

The stresse§(x) at any point within the element can be related to the strains at the gojngnd
hence to the nodal displacement$, The relationship between the strains and séi®scan be
expressed by the elastic properties of the element.

a(x= D() (3.9)

Where D is the stresstrain matrix and contains the elastic properties of the element, such as
Youngdés modulus EBE,amdshBmi sgondatr ahieoel ement
Details of matrixD for different types of continuum elements Wik given later. Substituting Eq

(3.8) into Eq (3.9), resuts in a relationship between the stresses at any point within the element to
the nodal displacements.

i(x= D.° (3.10
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For the specific case of the bar element the axial normal stress can be related to the axial normal
strain as:
o E -
g(x) = M
Xy~ Xy

The axial stress is therefore constant for the bar element.

6. Relaing theinternal stresses to the nodal loads

The internal stresses can now be related to the loads at the nodal points. In this way the nodal
displacements will be related to the nodal loads, since the stresses at each point within the element
are related to the wal displacements. The relationship between the nodal loads and the nodal
displacement constitutes the stiffness matrix of the element.

Here the principle of virtual work will be used to determine a set of nodal forces that are statically
equivalent to th sum of the stresses within the element. If an arbitrary set of virtual nodal
displacementgy*®, is imposed on the element where the actual nodal fétees applied, it causes

virtual strains’(x) at a point within the element where the actual stressed(>greThe virtual
displacement are related to virtual nodes by

u(x) = Nu*®= u**'N’

The external virtual work done by the nodal loadlg,, is given by:

W, =fj U )T0AV = g§7NT (fe)dv=u (VENTﬁ()f(x)dV)

(3.11
That we can write as
W, =u*<". f© (312
Where the nodal forces of the element is given by
fe=f/ NT)f(X)dV
F NT09f(x) (313

Now we calculate the work done by the internal stre3$esvirtual strains can be related to the nodal
virtual displacements using E.8)

U( x= B°®
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GT(x=*0 T (3.14)

The total internal work can be as

VVinFﬁele( ¥ (9dw= {§ W)B (3 B ¢ "fiy ()d®

e (3.15)
That can be written as
W, =u*T k€u (3.16)
where
k® = B"(x)DBX)dV (3.17)

Based on the principle of virtualork the total internal virtual work given by E&.15) , must be
equal to the total external virtual work, .§§.11), i.e.,

" (k°u-f9 9 (3.18)

Eq (3.18)is valid for any set of virtual displacements. Therefore the vector of virtual
displacementgy*®, can be removed from both sides of. By18). (The arbitrary set of virtual
displacements may also be assumed to have unit values sotlwn be removed from the
equation. Thus Ed3.18) gives:

keu®=f* (319

Therefore, to calculate the element stiffness matrix, the sligplacement matrix8, and the stress
strain matrixD, must be evaluated and then the matrix multiplication and integration must be
performel.

For the specific case of the bar element the stiffness matrix can be calculated as follows.

B=[4L 1Y
D=E
dv=A.dx

L L
k*=fB".D.B.dV=AfB".E.B.dx=A.E.B".Bffix=A.E.L.B".B
\ 0 0
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UL g1l Lg, SU2 -12 BAE B 4
EuL 81T LS e VT - 1
e € u

The above stiffness matrix for a bar element, obtained from the method presented in this chapter, is
identical to the one given mther method fronstructural analysis.

k®=AEL

The load vector of Equation 3.13 casdalculated assuming thi#ix) is constant. The direct integration
leads to

er o
&N, (%) f(x)Adx N

Eoo gxxl % AfZDX %Ll (3.20)
éf]Nz(x)f(x)Adx §
Thus Equatior{3.20)becomes
E é, 1 -1 ?ng %) fD(éT-Z
&L 1 §,g" 2 & @2

This is the element matrix agtion of theone dimensional bar problem.

3.4: Calculation of the Stiffness Matrix of a twodimensional bar element

The aim of this section is to present an approach to the construction of the element stiffness matrices of
the elements of twdimensional structures through transformation of coordinates. A structural frame
usually consists of members set at various angles to one another. Therefore it is more convenient to se
up the stiffness matrix in terms of the local nbemncoordinates and then transform each of the local
coordinate system to the global coordinate system adopted for the complete structure.

A two-dimensional bar element which is inclined at an adglet o t he gl ob alFigusey st el
3.3. AxesX andY refer to the local member system and axesidy to the global coordinate system. In

a framed structer each end of the bar could be displaced in both directions. The displacements
andV, u andv, and the forceB andQ, p andq are related to the local and the global systems, as shown

in Figures.3.
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Figure 3.3 Two-dimensional bar element

We start with:
AE,e1 -1@l, g Pe  AE el -1/ gQ¢
L &1 1 &), 0 P8 L &1 1 &, 0 Qs
where E and E are the axial and lateral Young modulus. In the specsd oha truselement, =0 that

reflects the fact that displacement of the nodes does not lead to shear forces. More precisely, the nodal
forces are always parallel to the bar element so tha@£0

We expand the matrices

¢10 -1 08 g B2 0 00 0d g 0
e u u e
AE,G0 0 0 0ghy G AEQ 10 -1ghy Qg
L 61 0 1 O@&J, U BE L& 00 OéJ, u 06
e u e e u e
€00 0 0@, i & 0 -10 1§, g Q&
And then we sum both equations
@E, 0 -E,  Oglp &R
e u
Ag 0 E 0-E _Q
L6E, 0 E OUk
e u
é -E 0 E a¥ &

For the special case of a truss elemeptEand E=0, so that the equation above reduces to

€1 0 -1 0eU, g Pe
é : u ~€6
AEGO 0 0 0gVh y Qg (322)
Lél1 0 1 0éJ, u Pg
e u e
§0 0 0 0gv, i Qf

The local and global systems of forces at each node can be related(By3img AppendixB:
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eP g eé+cogd) §) me
A gé . ] ¢ 3.23
Besin(d) ¢ 9 e 429

Thus the relabnship between the applied forces in the local and global systems is:

¢R gécogd) s()n d 0 ope
eQ Etg' sin(d) cpk d 0 gq]g a2
ép, ué 0 0 codd) s )nupg’ '
Q.46 0 0 -sin(d) cpk g
or simply:
F=T.f (3.25)

whereF andf are the force vectors in the local and global systems, respectively.
A similar relationship also exists between the two sets of displacements in the local and global systems:

p= T . (3.26)

gandu are the displacement vectors in theal and global systems
The stiffness matrix for a member in the global system can now be established. The basic force
displacement relationship for the bar element, given i(B29), states that:

F=K'q (3.27)

K® refers to the element stiffness matrix in the local coordinate system. Subsfiaimbp from Eq
(3.25) and Eq.(3.26) into Eq (3.27) results in:

Tf =K*T'u (3.29)
Both sides of the above equation are multiplied by
TT.f =T.K°T Tu (3.29)
One useful property of thE matrix is that its transpose is equal to its inverseg, i.e
TN =T TTT FT7 1= (330)

Therefore;
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f =T.KSTu =% °u (3.31)
Whereby k®is the stiffness matrix of the element in the global system.
k® =T.KeT' (332

It can be seen that the global stiffness matrix for a memfarak be obtained from the stiffness matrix
of the member in the local member coordinate system. So that the stiffness matrix of the bar elements
can be written in the global system as showowel

éc® cs -¢ -cs
ke:EgCS g -cs -§

> c=cos(d) sB83 n( d)
L g-cz cs ¢ cs
gcs < cs §
Eqg. (3.22) can now be written in the global system:
éc® cs -¢ -cseu g pe
é
AEgcs s -cs -§ gvl E qlg (3.34)
L g-cz cs ¢ cséu, U pg
gcs <€ cs & gvz H qg

In the assembly of the global stiffness matrix for a structure, an important point is that the stiffness
matrix of any member, established in local coordinates, must be transformeleigiotbal coordinate
system before commencing the assembly process.

3.5: Calculation of the Stiffness Matrix of Flexural Beam Elements

The procedure explaed in Section 4s employed here to calculate the stiffness matrix of a flexural
beam element. Ben elements are the basic members of rigid jointed frames.

The beam element considered here has two nodes, a uniforrseotism A, and is loaded by forces

and moments at each node as showrigares.4. The bam is assumed to be slender so that the effects

of shear deformations can be ignored. The effects of axial forces and deformations are also ignored here
The sign conventions for the moments and the shear forces are sheégure8.4.
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Figure 3.4 Two-nodebeam element

1. Local coordinate and node numbering system

The node numbering and coordinate system showigure3.4 may be used for the element where the
y-axis is normal to the axis of the beam. The number of nodgg+2nthe number of degrees of
freedom per node sy 2, that is a deflection normal to the beam axis, v, and a rotation about the
z-axis, d . T heehe ¢ofalonumber of degseef freedom for the element isigFn.e dos =4. The

nodal forces associated with the rotation and deflection of the beam at each node are a moment abou
the zaxis, M, and a shear force in thaliyection, q. Theize of the displacement vectar, and the

element force vectof$, is4 and the size of the element stiffness maktfixis 43 4.

eq, o é,kll ki, Kiz Ky, av.e
e u usce
éMl H e Ko Ko Ky, udlé ’ (3.35)
ng 3 ey Ki Ka Kgy uuvzé
eM, l]gkm Ko Kuz Kay (028

2. Displacement function

The variation of the transverse displacement can be approximated by a polynomial function. The
polynomial functionw, must contain one unknown coefficient for each degree of freedom:

v(¥) =a, +a,x +ax* +a,x°

V) =[1 x x* X% [a, a, & a1 (3:36)
Whereatoayar e t he unknown coefficients. The rotat
thus:

d ( xdv/dx =a, +2a,x +3a,x°

d(x) [0 2% 3x,7 (3.37)

Therefore the "displacements” at any point along the beam can be obtained fi@3@&gandEq.
(3.37) as:

éay
&v ge1l x x* X
= 2 (339
& Y€0 1 2x 3%&

é

&,
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The matrix f(x) and the vecta can be defined for the beam elementcbynparing Eq(3.38) with
Eqg. (3.3):

§'x) g1 x ¥ X
U

fT(x) =
) %J(x)géo 1 2x 3%

a=[a a a a| (339)

3. Relate displeements within the element to the nodal displacements

The general displacements within the element can be related to the nodal displacements using
Eq. (3.6).

et 0 0 O
oo &) B0 1 0 O
FT(x,) gél L L2 L3
© 1 2L 31
e
e 1 0 0 0
¢
g 0 1 0 ©
C'l=g 3.40
3 2 3 1 240
é L L L* L
e2 1 .2 1
e L* > L® L’
Thus the shape functions can then be calculated by:
el 0 0 O
é
(_;\O 1 0 O
N°(x)=f"(x).C* 1 x x* x° 3 2 3 -1
éL2 L L*> L
é2 1 2 1
e L® L® L?
This results in
e 2 2, ¥ 3,2 X X
N°(X) = d-S5 X+ 50 x-=x+5 SxA5x =+
g L L L L° L L L L

4. Straindisplacnent relationship

The "strains"e(x) at any point within the element can be related to the nodal displaceménts,
based on Eq3.8)
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Ux= B (3.41)

WhereO (i s ¢$heaiino for the beam. The only strain
about the zaxis. For the beam considered here, all other strains such as shear strain and axial strain are
assumed to be zero. The c uedvddulheeefora the mariBinp oi n
Eq.(3.41) is defined as:

B=[ d¥J(x)/dC]Ct 400 2 6xC*

_86 12x 4 6x 6 12x 2 6xy .
82 L® L L? L?L®L L%} '

B
. Stressstrain relationship

The fistresso for the beameefiement nowbrchbhucwonat
internal moment. The moment at any point within the beam can be related to the curvature as:

d*v
M =- El —
® dx?
Therefore, the stressrain relationship is:
Gx) = DXU= E° (3.43)

. Relate the Internal stresses to the nodal loads
Based on the principle of virtual work the stiffness matrix was obtained as:

k®=fB".D.B.dV

L L
k®=APBTELBdx EIA BfB dx
0

0

€36 144x 144% 24 84x 7% 36 144x 144x 12 60x 72xg
gL“ L5 LS L L% L° L*L® L°® L*LfLc |
é 24 84x 72X 16 48x 36k 24 _84x 72x 8 36x 3bxp
ke_AEl}lg L3 L4 L5 L2 L3 L4 L3 4 L 5 L 2 L 3 L 4 «
o8& 36 144x 144% 24 84x T7X 36 144x b4 12 60x 72X U
- — 4+ - + - = 4 2
er L LS L® L% LS L% L°® L L L+ L° U
e u
6 12 60x 72% 8 36x 36% 2 60x 72x 4 24x  3Bx o
At S — = 3 - % . =K
g L L+ L® L2 L® L* L*L* LS L2L®L* H
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e 12El 6El 12ElI  GEl

e L2 L® L2

e

é 6El  4El  6El  2EI
e_r€ 12 L L2 L

=AA
g 12EI  BEl 12EI 6El
e L L2 LS L2
€ 6EI 2El 6El  4El
&€ = 0 T2 T
& L L L L

The stiffness matrix of the beaneeient is symmetric, as expected.

The final steps to calculate the nodal load vector assuming that the distributed load is constant along
the beam, f(x)=wI'he nodal forces for the beam are given by:

fezh\l T(x).f(x)dx

Thus
s 3, 2 2} e L g wg
L T
é ., u  é. , ., U e
é 2X2 ﬁ& U gl 2L L g wg
ST b €73 Tauge
f*=wpg ax =we u=4§
063,223 0 ¢ L o Wk
TERNE o é 2 u o2
e 2 u e 2 2 u 2
e X X v e L Loy @
e L L g e 3 14 o é?2

The element matrix equation of the beam becomes

e12El 6EI 12El 6El g  éwL

- T T -4

& 6EI 4Bl 6EI 2Bl §i gaw?
e L Lz L I ﬁgﬁ
¢ 12El  BEI 12EI  GEIf, UgwL
é L° L2 L L? H, pé2
SOEl 2Bl 6El 4EI b & w
é L’ L 2 L 0 & 12

Problem1

Solve the problem of cantilever beam of Assignment 2, question 2 using this finite element solution with
one element. Compare the deflection, bending nmbyaed shear force versus position, to the analytical
solution of simple beam.
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Chapter 4
BAR AND BEAM FRAMES

The behaviour of frames structures consisting of bar and beam elements is considered in this chapter.
Simple forms of these structuresay be analysed using a variety of manual techniques. However, a
complex structure like the frame structure in Figure 4.1 consisting of many thousands of these elements, or
a structure combining these elements with continuum elements as shown in Figisebds? suited to
analysis by the finite element method.

The stiffness of the complete structure can be constructed using the stiffness of each individual element.
This matrix represents the relationship between the forces applied to any particidatontte
displacement of all the nodes in the structB. since one node may be shared by different elements, the
assembly of the global stiffness matrix is not straighforwards. In this chapter we will deal with this
important step of the finite elemeanalysis:given the stiffness matrices of all individual elements in a
structure. How can these matrices be combined to form the stiffness matrix of the complete structure?

Figure 4.1 Framed structure Figure 4.2 Continuum structure and finite element

4.1: Assembly of global stiffnesgnatrix .

In this section wewill learn how to assemelthe global matrices from the corresponding element
matrices.For a complex structure consisting of beams and columns and bfege® (4.1), the global

stiffness matrix defines the relationship between the load applied abartytgpthe deformation of any

other point in the structure. (The distinct points in a structure where the loads are applied or where the
di spl acements are required are termed Anodeso).

fe=kcu® ,e=1,é, n 4.2

In the first step of the assembly, the element matfftandk® of size n x n are expandéo F° andK*®
so that the equation above results in
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F°=K°®u

The expanded stiffness matrices have the dimensigns nyo; Of the global matrix equations. The
column vectou contains the degrees of freedom of the whole struclure.column vectoF® and the
matrix K®is completed with zeros for all nodes that do not belong to the element.

In the second step of the assembly, the global matrix equation is created by summing all the expanded
equations, leading to

F=kuk=3 k" F=3F*
e=1 e=1
(4.2

4.2 Stiffness Matrix of a Simple Onedimensional Structure

First we present the procedure for the assembly of the stiffness matrix of a simple structure consisting of
two bar elements will be examined in det@ibnsder the twebarstructurein Figure4.3. The structure

has3 nodes, each of which may deform and to each of which a force may be applied. Therefore, the
force vector or displacement vector has 3 componentsharstiffness matrix is of ord&g 3.

(4.3

Figure 4.3 Two-bar-structure

By examining the stiffness matrix of the structure more closely, it may be visualized that the stiffness
matrix of the complete structure can be formed by the stiffnesscesawi the individual elements. The
stiffness matrices, the load vectors and the displacement vectors of each of the elements can be written as:

' gek, -k, eu
Element a: gpl BE ) ng (4.4)
epz ue a 2
ep gek, -k, gig
Elementb: &7 g kb oy (4.5)
eos 0 € Ko £
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Although the two stiffness matrices are of the same order they may not be added directly since they relate tc
different sets of nodes. However, bydady rows and columns of zeros, both of the element stiffness
matrices may be expanded in such a way that each row and column relates to the three nodes. (A gener:
procedure for the assembly of the stiffness matrices of elements will be given later.)

ep; gek, -k, Oﬂuﬁ

Element a: gpz ue -k K, oY U é (4.6)

g0 ugo 0 0 pug

éOgOeO 0 Ue

Element b: gpg U O k,  *, Uzul‘J 4.7)

'390@ kb kb u3g

The above matrices can now be added together tmbkesthe stiffness matrix of the complete structure.

epl ze p; @ -k, 0 upg

ke
Two-bar structuregp, & U o0+ 3 R k. ki Kk, uy
i @
v

5 (4.8)
&0, HS P

- kb kb UQ

The simple procedure for the assembly of the global stiffness matrix for tHeatnetement structure can
be extended for more complex structures.

4.3: Stiffness Matrix of a Simple Twodimensional Trusses

The value of lie stiffness matrix of a ordimensional bar element has been obtained from the standard
stressstrain relationship. The individual components of the stiffness matrix have been determined by
permitting the element to adopt each independent mode of deimmmatturn and determining the
relationship between this deformation and the nodal forces. This method can be generalised to calculate
the stiffness matrix of twdimensional barlements, e.g. eleme(d) inFigure4.4

Structural frames usually consist of membthist are connected to each other at various angles. Before
useful expressions can be written for the analysis of complete structures, it is necessary to express the
nodal forces, nodal displacements #mel stiffness matrix of each element in a coordinate system that is
common to all members of the structure. A suitable frame of reference, normally a Cartesian coordinate
system, is used, as shownHigure4.4 for a simple pirjointed frame and ifrigure4.5 for one member

of the frame.
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Uy, P2

Figure 4.4 Two-dimensional truss Figure 4.5 Two-dimensional bar element

The nodal displacements and the nodal forces of each individual bar element can be exprgsgad as:
Vi, W, Vo)' andf=(p1, o, P, &), respectively. These twoewtors are related to each other b4? 4
stiffness matrix, akq=f.

Examplel:
For example, consider the landslide example from ChapfEi€domain of the problem was divided as

Xo=0 X1= (X Xo= 2 ¢ X3= 3 (X X4=L
O O O O
Uo e up & Uz & Us & Uy

From expanding the matrix for each of the elements

- o ey,
wg1 18 § 2 &}
We expand the matrix in each one of the elements
el -1 00 0@y, o 18 g 0 8 0 0O0ug2 gg O
e u e u e uu
€11 .00 Ogulﬂfqmz 12 5 0 & -10 0ug 0 Uf 2o
eooooo@zgfoego-@100u§:}+&€’&
e € u e u e u
g0 0 00 0gy g ¢ o0 f 0o0o0uggag f
80 0 0 0 Ofy, H o6 § O @ 0 OOug gy ©
@0 0 0 0 0l o 06 g0 @0 0O Ouggs O
u e u e uu
gooooogulufqmgoéuocgooo%ugfzqoo
© 0 1 -1 0&,¥0 1€ U0 GO0 0 0ugBL Y
00 -1 1 0gy § 12 g0 &o 1 -1ug g8
€0 0 0 0 Of, 08 O @O0-1 1ug Y 4



By summingall of theexpanded matrices we obtdire unrestrained global matrix equation

el -1 0 0 0@ o 162
é Y '
gl 2 10 0dyy 3
€0 -1 2 4 0@, ¥ ¢
e U

g 0 -1 2 1@ g :
80 0 0 -1 1 &, H 162

The next step is to impose the boundary condition at the first H@E@. First we remove the first row

of the dove equation (this equation provides information about the reaction force at the restrained node

that is not of our interest at this moment). The resulting equation is

e, o

&1 2 1 0 0g°

g0 -1 2 -1 04" ; P
u E
u

TR

eO 0 -1 2 -1§°
€ 0 0 -1 18"

4
Then we separate the first column from the Equation @bt

2
;
182

B

&l g 2¢ 1 0 Oeugep 1
én U S e uu
<0 +:§ 2 1 0 duyy fpR 1
é0 U 0é-1 2 -lé&uu E 1
é. u é é i
80 ¢ 06 0 -1 1 auyq 1/2

Imposing the boundary condition at the first nddp‘-owe obtain

2 -1 0 Oeu o 2
e u
g1 2 1 0, g fpf £
60 -1 2 -1é, U E ¥
e € u
e0 0 -1 1@y, g 1R

This is the same resuds derived irChapter2 but using a different method: @hager 2 we obtaired

the global matrix equation using the global shape function; here we calculate first the element matrix
equation and themssembledall matrices and apply boundary conditions. Note ti&t essential
boundary condition (raes with zero displacementjasapplied byeliminating the row and columaof

the correspondingode

Example2:

Construction of the stiffnesmatrix for a simple pifgointed structure consists of two bar elemeas
shown inFigure 4.6 - is considered here as an example. Both elements have the samsectuss
area A, and Young's modulug.
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Figure 4.6 Two-dimensional frame gructure

The stiffness matrices for elements in the global coordinate system and their relevant force vectors and
displacement vectors are shown below. Eleni@@ntonnects node to node2. The inclination angle of
element(a) isd = 45°. Therefore:

@05 05 -05 -05eu g pe
é 8, u _é
Element (a): AE é0'5 0.5 - 0.5 0-53\/1 § O
J2 Lé05 05 05 056, U pg
§&05 05 05 05§, g qg
Element(b) connects nod2 to node3, thusd = 18C.
¢ 1 0 -1 0w, oppe
e 4, Y qf
Element (b): AE e 0 0 0 ng Y ng
e -1 0 1 Oeu;, U pe
é € u e
e 0 0 0 0&s aaf

These matrices can now be combined to assemble the stiffness matrix of the complete structure.

ey2/2 yal2 -122 -fd2 o o,

é g pléi

ez Yalz -f22 -Ad2 0 dy, § ag
AEcyYa? a2 {24 Ad2 1 g Y PE 9

L Syaz Jalz (2 Ad2 o oo u 9%

€ 0 0 -1 0 1 ofs g Pg

€ 0 0 0 o o of:0 0k

Eqg. (4.9) can be solved if sufficient boundary restrains are applied to the structure.
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4.4. Two-Dimensional Trusses

Plane trusses consist of a{pmted assembly of bar elements, each of which is in a state of pure tension or
compression. A simple truss structure is shownridare 4.7, which is thesubject of the analysis in this
section. The general procedure explained in section 2.2 for finite element analyses is employed here for the
analysis of the truss structure. The general procedure for finite element analyses depends very little on the
typeof the structure and whether the structure is a truss, a frame, or a discretised continuum.

1. Coordinate system
A cartesian coordinate system is best suited to any type of truss.
2. Discretisation

The truss structure consists of 10 members. Each of the ngmsbenosen as a pjainted finite
element. No further discretisation is required for a simple truss structure. The finite elements are
numbered from 1 to 10 (in circles) as showRigure4.7. A linear bar element has two nodesd

each node has 2 degresdsfreedom.

Figure 4.7 Truss structure

3. Node numbering system

The choice of the node numbering system for a structure affects the distribution @intherm
stiffness components in the global stiffness matrix. It also affects the storage size of the stiffness
matrix in many finite element programs. In general, a good node numbering system shall minimise
the difference between the end node numbers pi@mber that is a part of the structure. Such a
numbering system for the nodes is showRigure4.7.

4. Element stiffness matrix
The stiffness matrix of bar elements has been derived in the previous sections as:
ec® cs -¢ -cs
e = Eg cs ¢§ -cs -8
L €c® < & cs
S- cs € cs §

(4.10)
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Where A, E, and L are thecressect i on ar ea, ¢, hra thelength gfdhe bamo d u
element, respectively, and c=dgss=sin[ , whereg[ is the inclination angle of the element axis with
respect to the globalaxis, measured in the amiock wise direction. The stiffness matrices of all
elements are calculated from .£4.10) and shown inTable 4-1. The displacement vectors for
different elements are also shown in the same table.

Table 4-1 Stiffness matrices and displacement vectors of the bar elements

Element No. Displacement vectors Stiffness matrices
1,2,3,10 uf :[ul’\éyL&!\é] é,l O ‘1 O
e
L=H ut ={lu,v,u,Vv ke _AEg0 0 00
d = z [U2 2 U; 4] 1,2,3,10 H é‘l 0 1 0
U5 =[ug Vi 4] §0 0 0 0
ufo:[uyvsius’vs]
4,6 > - -
TS [TRRVARTARY] 21 1-1 -1
. AE 71 1 -1 41
=2 H Uz =[U;, v, &, e BRel 1 1 1
d =45 € 1 4 1 1
& Z
5,8 =
Ug :[UZ’VZ’L%’Vs] % 0 0 0
L=H, e _AE[Z 1 0 -1
d 290 Ug =[ua Vi 1 o] %= "H&@ 0 0 o
® -10 1
7,9 & - K
U? :[U4,V4,U3,V3] g t-1 41
RTINS RS
¢ =138 €1 -1 1 1
& - K

5. Global stiffness matrix

The element stiffess matrices can be enlarged to full structure size and added together to assemble
the global stiffness matrix for the complete structure. An example of this type of assembly has been
given in Chaptel. Since each node has two degreefeedom, the umstrained global stiffness
matrix for the énoded structure is of the ordert12:
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5 1 1 1 1
§1+¥ ? 1 0 ? T\lﬁ 0 0 0 0 0 0 ’E
§ 25 25 0l 2 Pl 35 0 0 o1 ol 0 0 E
¢ 1 0 2+%ﬁ 27% 0 1 0 T‘F 215 0 0 u
§ o1 01 o l+ﬁ o1 1 o1 clJ 5 5 0 0 E
g 2\1/5 - ? 0 0 g o1 iﬁ 2\? 0 0 0 ﬂ
K:EE 25 3% 0 1 o1 1+1ﬁ 2751 ; 2*15 0 0 0 0 E
H E 0 0 -1 0 Zlﬁ @ 2+¥ 27\? 0 0 1 0 E
¢ 0 0 ol 0l 55 35 ik Yih ol 1 o1 2 u
§ 0 0 2—\1/5 - ? -1 0 0 0 1 01 - ? @ E
: 0 0 5 25 ° 0 0 1 Y Ph,
g 0 0 0 0 0 0 1 0 % % 1+% T\%E
; 1 1 1 1 U
¢ o 0 0 0 0 0 0 0 5 "3k 3k 35\

6. Boundary conditions

The boundary conditions shall be applied by eliminating rows and columns of the global stiffness
matrix associated with the fidedegreesf-freedom. Four of the degree§freedom are restrained,

i.e., W, V1, Us, V. Therefore, columns 1, 2, 11, 12 and rows 1, 2, 11,12 of the global stiffness matrix
are eliminated and the size of the restrained stiffness matrix reduces to 8

& 1 1 1 1 g
Y 0 0 -1 0 R
2,2 22 22 22 22 Y
¢ 1 1 1 1Y 4.1))
€ —  1+— 0 -1 0 0 — U ’
é 2V2 22 22 220
¢ 0 0 1+i 1 1 0 B
g V2 22 22 B
: 1 1 1 :
€ 0 -1 0 14— 0 o U
K,=EAC V222 22 u
R H g _l 0 i i 2+i i 0 0 3
é 22 22 22 22 Y
é 1 1 1 1 a
= 0 0 — L= 0 1 ¢
g 22 22 22 22 B
° 1 1 1 U
6.~ 1 0 0 0 1+—— 0 u
é 22 22 2 u
é 1 1 10
- 0 0 0 -1 0 1+ §
8 22 22 NER

The restrained degrees$-freedom shall also be alinated from the global displacement vector and
the global force vector:

q:k:[ 2U 5 g Y 4, 4 Ug 5]T
F=[p.g.R.9.p .0 .0

7. Solution of the finite element equations
The finite element equations can now be solved for the unknown nodal displacements:
-1 —_
Kr-Fr= 0 (412)
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where:

0.6547 -0.1845 0.1488 -0.1488 0.3453 0.1488 0.1845 0.184%

e
€ 01845 27204 - 0.0641 19497 - 0.1488 15454 04895 14323
é 0.1488 - 0.0641 1.1200 - 0.1772 0.1845 - 0.4895 0.6736 - 0.2692)
(i  H 01488 19497 -0.1772 20628 -0.1845 14323 02692 1212
R TEA€ 03453 - 0.1488 0.1845 - 0.1845 0.6547 0.1845 0.1488 0.1488!
€ 0.1488 15454 - 04895 14323 0.1845 27294 0.0641 1.949%,
€ 01845 04895 06736 02692 01488 00641 11200 01772
6 0.1845 1.4323 - 02692 12120 0.1488 1.9497 01772 2.062§

Assuming that a vertical load of 108N is applied at nodd, as shown inEq.(4.10), and
E=210° kPa, A=0.0Im?, H=4m, a soluibn to Eq (4.12) results in:

_ T
o _[ 2 U 3 13 1 uv ., Yy TR ¥ v Vs U]
:[ .0003, -.0039, .00035, -.00413, .0003700286, .00054, .0O24]f

The displacements associated with the restrained degidiesedom, y, vi1, Us and \ are all zero.
The reactions at node 1 and 6, i.a,,@®, ps, Gs, Can be calculated by multiplying the first, second,
eleventh and twelfth rows of the unrestrained stiffness matrix by the displacement gector,

[p..q .p .q] =[ 517.88,666.6% 517.883.33

. Calculation of stresses and strains for each element

The axial strain, U, and axial stress, G, in
displacements. The nodal displacements should be transformed into the local coordinate system of
the element under consideration. The relationship betweeeléheent nodal displacements in the

local coordinate systengp®, and the element nodal displacements in the global coordinate systems,

U €, was given in Eg(4.1):

g = T. 1 (4.13)
Where T is the transformation matrix, defined by:

& codd) - sin(d) 0 Og
é . NV
Té sin(d)  codd) 0 0
é 0 0 codd) - sin(d)u
€ 0 0 sinld) coda)y

In which[ is the inclination angle of the elemefhe axial strain and stress for elem@nfior example,
are calculate as follow. The element nodal displacement vector in the global sybténs:
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wW=[uw,v%,y,y]" =[ 000030, - 0.00390, 0@054, 0.0024}
Therefore the element nodal displacements in the local coordinate system is:

qf:TTe:[lul 2 2]LTJ

@ cos(45) sin(45) 0 Og @00030 @ 0e002t
o - & sin(45)  cos(45) 0 0} -£00390 _ U - 0o2c
é 0 0 cos(45) sin(45)t+ 600054 U 0€002(
& 0 0 -sin(5) cos(45)] -200242 { - ORDO1:

The axial strain and stress can be calculated for the element as:

g Uz Uy _ - 0.00200-0.00255_ )

L 42

G =E.U=15986 kPa

4 5: Two-Dimensional flexural Frames

Flexural frames are structures with rigid jointed members that resist loads primariéxbraf action.

The stiffness relation is first derived in a local coordinate system, defined by the member axes, and is
then transformed to the global syst&igure4.8. The stress resultants at any point of so@mbers

consist of a moment, a transverse shear force, and an axial force. Thus the number ofofiegrees
freedom at each node ig=B. The total degreesf-freedom for the twanoded flexural element shown

in Figure4.8 is therefore g,=6. The size of the element stiffness matrix3i6.6

Figure 4.8 Two-nodebeam element
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The stiffness equation of a beam element in its local coordilyatens was obtained in Chaptr
ignoring the effects of shear deformations and axial forces, as:

e12El  BEl 12EI 6El ¢, 8 Q¢
655 Gz "3 7z & U é
oL L L° L* & 5 ¢
gOEl 4EI  GEl 261 & u M (4.14)
é |2 L L2 L g g g '
e
o 12El  6El 12El  GEIGY § Q
é L L2 L L2 g u ¢
OEI 26l GEl 4EI &1, ;i
é L? L L2 L é@ g é
Equation4.14can be expanded to include #féects of axial forces,;@nd p:
‘ 2U, geP,
SEA 0 0o B2 o o EBTae’
g L L Jé
é 12EI  6EI 12EI  6EI EgVi UéQ
¢ T o % o og b
é ue
s o OEI 4B 6Bl 26l gd ueM, (419
¢ L® L L> L e
s EA o EA 0 0o {0 ueh
é L L Ue
A u
¢ 0 _12Bl BEl o 12E1 6EI Qv, ;¢Q,
G L3 L2 L® L2 [ 6
A u
¢ o GEl 2Bl GEl 4El Gy D,
g L L L L

For an arbitrarily oriented beaslement, inclined at an angleit is necessary to express the stiffness
matrix in the global coordinate system. The local and global systems of forces and displacements at each
node can be related by:

¢P gécodd) si)n d e
F;‘Q ggsm(d) cpop d ‘ g
eM gg O 0 1 Hve
eU gecos(d) s)n d 20¢
Yt ey e b
ed yg O 0 1Y e

Therefore, local and global nodal forces and displacements are related by:

:TT.fe ’ qje - T -I-e
Where
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é'cos(d) - sin(d) 0 0 0 0 o

é U
gsin(d) codd) 0 0 0 0
L€ o0 0 1 0 0 0 o
_g 0 0 0 codd) - sin(d) 0 3
Y 0 0 sind codd) 0 U

g 0o 0 0 0 0 1y

The element stiffness matrix the global coordinate system can be expressed as:

ke=T.K®.T"
or.

e&EA , 12El,5  &EA 12EIg BEI AEA , 121,56 &4EA 12Elg 6El_ o
G CH+TS0 B BC -5 - B C 4S8 @ - T BC - oS
&6 L L + ¢clL L+ L clL L + clL L+ L U
6 AEA 12EIg AEA , 12El ,§  6El AEA 12EIg AEA , 12El ,§5 6El
S & -5 ®C @ -S+-5C0 ¢  -&—-T-sc -&-s+-c0 —cC ! 4.16
ecL L= clL [ L cL L= clL L+ L2 ( )
e 68 6EI 4El 6El _BEl 28

ke =€ L L L L L L U
€ aEA , 12El ,5 &4EA 12El§ BEI 4EA , 12El,5 AEA 12Elg 6EI_ U
g —C+——50 -&—--50cC ~s & C+=—50 & -—50C =S u
écl L + ¢l L° =+ L ¢lL L + ¢lL L° =+ L U
é A&EA 12Elg 4EA , 12El ,§  GEl AEA 12Elg AEA , 12El ,5  6El 0
f- - BC - —S+-——5¢c0 --—C &—- BC @ -S+-—5¢c0 -—C|
g cL L= cL [T L cL L* = cL [T L4
¢ 6| BE1 26l 6l 6Bl L=
g L2 L? L L2 L? L @

Note that in this case, the force vector at any point comprises stress resultants at the point consisting of &
moment, a transverse force and an axial force. The displacement vector at any point als@s@mpris
curvature, a transverse displacement and an axial displacement. For this reason, these vectors are ofte
called the generalised force vector and generalised displacement vector, respectively.

4.6: Suitable Node Numbering System

A suitable node numbering system is required to minimise the computer storage required for storing the
global stiffness matriceand also to save on the time required for calculation of the inverse of the
stiffness matrices and solving the finite element equations. This section provides simple instructions for
a suitable node numbering system.

The method for calculation of the $tiéss matrix of a twdar structure given isection4.3 can be
theoretically applied to other types of structures. It was shown that the global stiffness matrix of a
structure can be formed by giving each node in the structure a unit displacemeatdirection (while

all other nodes being held fixed), and calculating the nodal forces developed. Since all other nodes are
held fixed, forces are not developed at nodes beyond the ones linked by a member to the node being
displaced. It follows thabdnly a few stiffness terms result from a unit displacement.

If the nodes are suitably numbered so that the maximum difference betwegmunotbers in any one
member is kept small, the stiffness matrix consists of a narrow band efenomumbers clusted
about the main diagondfigure 4.9(a) shows diagrammatically such a banded stiffness matrix. In this
figure Nyoti s t he order of the full square stiffness
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B=d, (1+| (Nodg - Nodg ), ) (4.17)

is the

max

Where ¢ is the number of dgeesof-freedom at each node aﬁ(d\lodei - Node, )

difference between end node numbers in the member that has the maximum difference in end node
numbers.

The stiffness matrices are also symmetric. Therefore, for the purpose of efficiege stbeacompact
storage ofFigure 4.9(b) should be adopted, in which only the upper half of the band of the whole
stiffness matrix is stored. The diagonal of the whole stiffness matrix becomes the first columen of t
compact matrix. In large problems B may be only a few percentygf Thus very large savings in
storage can be made by the compact storage of global stiffness matrix.

A large portion of the computational time in a finite element analysis is spesdlvng the stiffness
equations, i.e., finding the inverse of the stiffness matrix. The computational time required for solving
the stiffness equations is approximatelpportional to the square of the bandwidth of the stiffness
matrix. Therefore, a stable node numbering system allows considerable reductions in computational
time by reducing the bandwidth.
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Figure 4.9 The banded system and compact storage of the stiffness matrix

To demonstrate the effectiveness of a suitable node numbering system in reducing the bandwidth of a
structure, consider a fiv&tory frame structure consisting 1d nodes, each with three degreés
freedom. The restrained structure has 30 degreésgedom, thus Q,=30. Three different
nodenumbering systems are shownHigure 4.10, together with the stiffness matrices resulting from

each of the systems.

Each(x) in the stiffness matrices represents’ 8 atix containing the stiffness coefficients associated

with a node. For system (a) the bandwidth B is equal to 9, and for systems (b) and (c), B=18 and B=30,
respectively. Obviously for this structure the most suitable node numbering system is the oriedpresen

in Figure4.10(a). The worst node numbering system is case (€igure4.10.
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Figure 4.10 Different node numbering systems

(After Dawe, D. J., 1984, Matrix and Finite Element Displacement Analysis of Structures)

Problem1

1 Calculate the nodal displacements and reactions for theipted structure shown below.

1 All members of the structure have a cross section are@.80lnfand a Youngds mod
E=2 10°kPa.

1 Evaluate the results, are they reasonable?

1 If the cross section area of the vertical member is increasEaO@ytimes, howaks this change
affect the results?
9 ®
10m
9 ®
100kN
Problem2

shows a plane frame consists of 5 elements that are rigidly connected together. The supports are alsc
fully fixed. The properties of theainents are:
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Elements 1, 2, 3:  A=0.0025nf, 1=0.00005m, E=2 10° kPa
Elements 4, 5A=0.0010n7, 1=0.00025m, E=2 10° kPa

If a horizontal load of §=1000kN is applied at node2, calculate the rotations of node2.

2 @ 4 ® 6
’ C £
@ @ ® 5m
y 1 3 5
7777 7777 7777
X 10m -

Figure 4.11 Frame structure

The general procedure for finite element analyses, explained in section2.2, is employed here for the
analysis of the frame.

1i 3 The coordinate system, discretisation (element numbering) anchnod®ering system used for the
analysis of the frame is shown in

4. Element stiffness matrix

The stiffness matrices of all elements are calculated usin@B&g) and shown in together with the
element displacement vectors.

5. Global stiffness matrix

The global stiffness matrix is assembled using the direct method explained teiChafhe
Transformation matrices for different elements are shov@eution 4.3The restrained global
stiffness matrix for the complete structure is given as:

£40960 0O 2400 - 40000 O 0 0 0 0 o
g 0 104800 12000 0 - 4800 12000 0 0 0
é 2400 12000 48000 O  -12000 20000 O 0 0 U
& 40000 0 0 80960 O 2400 - 40000 O 0§
Kq :2 0 - 4800 -12000 O 109600 O 0 - 4800 120003
& 0 12000 20000 2400 0 88000 0  -12000 20000y
g 0 0 0  -40000 O 0 40960 0 2400 3
é 0 0 0 0 - 4800 -12000 O 104800 - 1200Qy
€ o 0 0 0 12000 20000 2400 -12000 48000V
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Table 4-2 Stiffness matrices of the elements

Elemen Displacement vectors  [Stiffness matrices
No.
1,23 & 960 0 -2400 -960 0 - 2400z
ul— U,V 1 12 Yoy é u
¢ 0 100000 0O 0 -100000 O g
u3=[u,, V3,d’3 TR © -$2400 0 8000 2400 O 4000
. d 12372-960 0 2400 960 0 2400,
us_[u5,v5, 516 M e] e 0 -100000 O 0 100000 0 U
e u
g 2400 O 4000 2400 O 8000 g
4.5 e 240000 O 0  -40000 O 0 o
] V <
Us = [uz’ 20z 4 Y 4] g 0 4800 12000 O - 4800 12000
U ; :
=[u,,v,.d, .o & 0 12000 40000 O  -12000 200000
U [ e Volens H 6] 5 7% 40000 0 0 40000 O 0§
g 0 - 4800 -12000 O 4800 '120003
g 0 12000 20000 O  -12000 40000y

6. Boundary conditions

The boundary conditions have been applied to stiffness matrix by the direct assembly method. The
vectors of tie restrained global degredé-freedom and the global force vector for the structure are:

0% = [lz‘ n b !4d4!4 6 16 J :Ejl'2 3 N s éj7 sésT
F.=[p,, &% M, p, 0, M, p,a,M" 41000, 0,0, 0,0, 0,0, 0

7. Solution of the finite element equation
The finite element equations can now be solved which result in thewnkmodal displacements:

q=[0.394,-0.002, 0.019,70, ®DZ, 001§

Therefore the rotation of nodeis [ ;= - 0.019radiars, the negative sign indicates a clockwise
rotation.

Problem 3

This question is about finding the structure of the finite element analysis using the steps listed below.
Most of these steps belong to the threénncamponents of the analysis: gyeocessing, processing, and
postprocessing. Few of the steps are not necessary. Find the steps for each component and sort them in

the order they should be executed during the analysis.
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a) calculate displacement at the f) invert global stiffness

doman matrix
b) assembly unrestrained global g) apply boundary
matrix equation conditions

c) input boundary conditions h) calculate nodal loads
d) calculate stress at the domair i) create element matrix
e) input material properties equations
J) invert elemenstiffness
matrices

K) input nodes

l) invert unrestrained global matrix
equation

m)calculate stress at the nodes

n) input elements

0) calculate nodal displacement

Write your solution in the table below. Note: Not all boxes have to be filled

Component include the lettes ai 0 of the steps, in the order they should be executed

Pre-processor

Solver

Postprocessor

Problem 4

This problem is about the constructiohthe stiffness matrix for a simple structure that consists of two
bar elementsas shown in the figure below. Both elements have the samesectisn areaA=0.01m
and the same length L=1m. A load P=10N is applied at the right node. Write your solutions in the boxes

below.
u

U1 2 us
j[ E=50MP:  E,=100MPa P

- X +
—_—

1) Write down the element matrixjgationf® =k °u ¢for each bar.

2) Find the expanded element matrix equatin= K °u for each bar

2
3) Find the unrestrained global matrix equatfor= K.u, K 3K*®, F = °

e=1 el

4) Find the global matrix equation after applying thermary conditions.

5) Find the displacement of the unrestrained nodes
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Chapter 5
STRAIN AND STRESS IN CONTINUA

The general equations for derivation of the finite element relationships have been established in the previous
chapters through consideration of simple ahmensional elements such as bars and beams. The extension

of the general equations to two or thodmensional elements differs from the unidirectional case only in the
degree of complexity involved and not in tesic concepts. The remainder of the text will be focussed with
two-dimensional elements, but before such elements can be studied in detail, a review of the relevant
concepts and the governing relatiohgontinuummechanics will be presented.

To carryout a stress analysis of a structure using the finite element method, it is first necessary to
understand the concepts of stress and strain in matrix form. Furthermore, people who intend using this
method with such an aim in mind should have a good ceimemsion of constitutive modelling. The
reason for this is obvious. Human lives will depend on how well the engineer models the structure and
interprets the results. Ultimately, it is a stress analysis problem the engineer is investigaiing
compuer analysis problem as often depicted in glossy FEM commercial package sales brochures. No
matter how sophisticated the computer method may be, experience and knowledgeable engineering
judgement should always be the absolute criterion for a correcteemigig design decision. In this

Chapter, the strains and stresses in continua are presented followed by thstratresslationships.
Consideration on constitutive modelling is limited to linsatropicelasticity and only a brief review on

the thery of elasticity is provided.

5.1: Kinematic Equation: definition of strain

In this section the concept of normal strain and shear strain in a solid continuum will be reviewed.
Expressions for transformation of strains from one coordinate system toear@oe also provided.
When a body is subjected to applied loads it will distort. A small element which is subjeglamen
loading may deform in the manner shown schematicaliygare5.1.
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Figure 5.1 Normal and shear strain in xy plane
In general a small planar distortion can be broken up into:

(@) a rigid body translation in the x direction
(b) a rigid body translation in the y diction
(c) a rigid body rotation about the z axis
(d) a normal straim in the x direction

(e) a normal straimy in the y direction

) a shear straig,y in the xy plane.

The rigid body components (a, b, c) involve no change in shape and hen@mad ke axial extensions
(d,e) involve a change in area while the shear dfjaiinvolves no change in area.

Relation of strains to displacements

An examination of the displacements for the element showfrignre 5.1 shows that for small
deformations and changes of shape, the strains can be expressed in terms of the displacement componer

as follows:

g, = e’ (5.1)a
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It is clear that by examining the deformation of elements in the yz and zx planes it is possible to identify

similarly the strains in these planes:

o _ MU,
U, 7
u
9, = h + (s (5.1)b
Mz HY
o, =M,
Mz  MX
The full threedimensional kinematic relation can be written in a compact for as
0= | (]

Where

e

i 0 0

é

eop K o

e Hy

e

€0 o H
L=¢ K

éﬁ Ky

Gy

€o B _H

¢ 1z M

e

e o _H

ez M

Eqg ((5.1)a,b) can be used to evaluate expressions for the strain components if the displacements are
known. These expressions may be exact @ ianalytic solution or approximate as in the case when the
displacements are expressed in terms of interpolation functioriéd.Bap) give zero strain hienever the
displacements considered correspond to a rigid body movement.

The volumetric straim, for an element is defined to be the increase in volume divided by the initial volume
of the element and for small strains it is related to the normalsbyitine following relationship.

o o

4=0,+0,+0, (5.2)
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5.2: Transformation of strain

It is sometimes convenient to determine the strains in terms of a local coordinate system. It is therefore
necessary to find a method for transformation of strains from one coordysiéen to another. The
transformation of strains is facilitated by introducing the mathematical component of shea ,gtrkin
contrast to the engineering shear strgin this is defined by the relation:

J

0y=0=—2

0.20,=%

The strain tensaeis then defined as

Where the components of the strdensor can be calculated from the displacements using the
relationship:

C’S:E P 4+
2

And p, g can be any of the symbols x, y, z.
In the transformed coordinate system the strain tensor has the form

i Uy Uoo
K=, G, U,y
& 0, G

where x.,= E%IUJ +%8and P, Q can be any of the symboils X, Y, Z.
2(;, HQ P =
The local and global coordinate systems are related by the relation gizg(Brb), AppendixB:

r=H.R
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eXa eXg el, m ng
_e,u _6e,u 7 _ u
Wherer = 2 0 R_SYL‘J’ H —glz m, Ny

ez 24 g: my n.

And I, m, n; are the cosine of the artiockwise angles between the different axes of the two coordinate
systems, as defined by H8.6) in Appendix B

The strain tensors in the differemardinate systems can be related by the relations:
O = H
E=H"U

Strains in a cylindrical polar coordinate

The strain components in cylindrical polar coordinates can be found by determining theedatiesto a
set of reference axes X, Y, Z with the X axis parallel to the r direction, the Y axis parallegjtditbetion
and the Z axis parallel to the z axis as showFigareB.4, AppendixB. Thus:

) U Uo ec s 0, U, Qe -s O
,0 o (o] u_é ) o o o lé l]
& Go Ug=gs o Ol Oy G © 0 3
g‘%r Uzd l42[5' 60 0 1®x Qy L;z%) 0 1H

Where c=cosd and s=sind.

The expressions for strains in terms of displacement components in polar coordinates are more complex
than in cartesian coordinatésis found:

°© _“ur
U, o
oo _lpu, U,
= ¢ 4T
oL rpd 1
4. 1ul (5.9
Ozd:h -'LIJ : :qu
wz r d

_lpu, pug ug
rpd pr r

rd

5.3: Balance Equation: Definition of Stress
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The previous section has been concerned with deformation of a contibodysin this section the
forces within the bodythat cause this deformation will be examined, stress components under
threedimensional conditions will be defined, and the concept of a stress tensor (matrix) will be
introduced together with transformatiof stresses in different coordinate systems.

Consider a small rectangular box, having sides of leiiythDy, Dz parallel to the X, y, z axes
respectively, which surrounds the point P. The material outside the boxes will exert a force on each of
the sixsides of the box. As the dimensions of the box approach zero the forces on the sides of the box
also approach zero. However the force per unit area approaches a limitinghatlise called the
traction. Consider the positive x face (the face havingxlais as its outward normal) and assume the

X, ¥, z components of the force acting on this face are de@bigdDF,,, DFy, respectively.

The stress components,{, Syy, Sxz) at point P inside the face are defined by the relationships:

lc:Ixx ':q)_L:X ny :q:)Ey lsz 'ch—Ez
PA PA PA

WhereDA, = Dy.Dz is the area of the x face.

It is similarly possible, by considering the force acting on the y, z faces, to define the stress components
(Syx Syys Syz) acting on the yace and those acting on the z fagg,(Sy, Sz7). In general

i, =2k
pq -
PA

Wh e r gqis thé&force acting on theface alongthegl i r e c t i pisithe areadothepAace. This
leads to the conclusion that the forces per unit arasasummarized fRigure5..

The collection of stress componests, (where the indices p, q can take any of the values x, y, z) is
called the stress tensor at point P, and is defined below:

o

g'lxx uxy ung
u=gdl, U, U,y (5.5
g‘sz uzy uZZH

The stress componentsy, Syy, Sz, are called normal or direct stresses. The comporsspts,, S,
Syx, Szy, Sxz are called shear stresses. In this course a tensile normal stress will be assumed to have s
positive value.

5.4 Traction acting ;m a plane

The stress tensor defined in the previous section can be used to calculate the force per unit area acting ol
any plane passing through P. Suppose that a plane passing through point P has an outward umit normal
as shown in Fié.2
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Normal n

Traction T

Fig. 5.2 Traction acting on a plane

By considering the equilibrium of the tetrahedron shown irbE2gt can be shown that the traction T
(force per unit area) acting on the plane is given by:

T=40 (5.6)

Co
Co

n +u,n,+u.n

XX X xy 'y xz 'z

1
Co

TX

Co
Co

anX+ yyny+ yZnZ

1
Co

Ty
Tz = uzx nx + uzy ny + uzz nz

A simple demonstration of this is found by considering tlyepiane system of stresses in which there
are no shear stresses acting on the z face, ssh@tands,, = 0. The situation is shown saimatically
in Fig.5.3.

Fig. 5.3 Relation of stress and traction

Equilibrium of the forces in x and y dogons reveals that:
T, |AB|=d,, |08 +(,, |OA

T, |AB| ={,, |OB +0,, [OA
|OA| =cosJ|AB|
/OB =sinU|AB|

The normal to AB is given by:
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5.5 Static equations for the stress

Under most cases the stress distribution will vary from point to point. In most civil engineering analyses
it can be assumed that processes are quasi static, i.efettte ef acceleration can be neglected. In this
case consider the equilibrium of rectangular box shoviigare5..

z

Figure 5.4 Left: equilibrium in a rectangular box whose center is the point (x,y,z)Right: stress components
seen from the top.

The force in the z direction acting on the facB &L 0’ is: +H,(x, y, g+q
The force in the z daction acting on the face ABC Ois: - ﬁzz( X, VY, 2) .
The force in the z direction acting on the face A B B*A* is:+ﬁxz( X + X ) 2,
The force in the z direction acting on the face O C C*O* is:- fJXZ( X D X ) 2,
The force in the z direction acting on the face B C C*B* is:+L°JyZ( X, y+ ):py /

The force in the z direction acting on the face A O O*A* is* l°Jyz( X ,-yD )y | 2
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The force in the z direction due to the setfight of the matéal is: W,J0X QY

In the above relations, the quantities in brack@tsindicate the coordinates of the point at which the
stress is taken.

The sum of these 7 force components must vaBigldlividing the resulting equation by thelume of
the box and lettingx,Dy,Dz- 0 it is found that:

O, (x+@x/ 2, y,2z) b (x. otg/¢52) 0,0(x.y ®ykyz @/ 3) (;
Dx D D 2

Now we use the concept thfe partial derivative to obtain

quz +“uy2+uuzz +Wz :O
ux gy pz

The complete set of equilibrium equations can be derived in similar fashion afalidsthat:

M | Wy | +tw, =0

by pz

Hiy By | Yy, +w, =0 (5.7)
px Hy  pz

pu ><z_|_l"l Zy+uuzz +Wz:0

X py  pz

Where w, wy, W, are the components of the unit weight of the material in the x, y z directions
respectively. It can be written in a compact form

LT0+ we

Where L is the differerail operator defined above, and
° T

lj:gjxx %’ ZQ Xyll‘)j yz l(:Isz

< T
W=gNX Wy w, E
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Stresscomponents in different coordinate systems

The stress components defined by (b) were based on the x, y, z coordinate system. The coordinate
system X, Y,Z could also have been used to define the stress t8naiad in that case it would have
been found that:

By Uy U@

_ B o o U
= ngx Uy Uz
Bl Uy Uzl

If Eq. (5.9) is applied to the three planes having the X, Y, Z directions as outward normals respectively,
the stress tenseiare related by the following equations:

0= HE'
E=H ¢

WhereH is the transformation matrix which relates two coordinate systems and definedByJEq

Example5.1

In example 5.1 the stress state was given relative to the x, y, z coordinate system. Hahewer,
examining the stress state in the silt seam it is more appropriate to use a local (X, Y, Z) axes in which
the Y axis is normal to theeam and the X, Z axasein the plane of the seam. Thus

&S Sy § 9 +HB9397 03420 0 2 O 0  HH3I7 6.3420
E=gsw Sy & & G420 09397 0 Jog 300 0 08420 0.9397

e~ Yx

észx Sy % H éo 0 1 Q é 0 -250 Q] @ 0 1
& 25585 1607 O
£=£16.07 20415 0 (kPa)
g O 0 -250

Symmetry of the stress tensor

The convention adopted in defining the stress components is jhakefines the "p" component of
traction (force per unit area) acting on the planeirttathe "q" axis as the outward normal. By
considering the moment equilibrium of the rectangular box showigire5., it can be shown that:

o]

upq :qu (58)



Stress components in cylindrical polar coordinates

The stress components for a set of cylindrical polar coordinates correspond to those for a set of Cartesiar
axes having an X axis parallel to the r direction, a Y axis parallel @ directionand a Z axis parallel to
the z direction.

élcjrr l‘jrd’ lc:Irzg ec s Oﬁjxx l?ny li,sz@c -s Og
,O o o u_ é O o o Lé u
zr uzd uZZH @0 0 1@2)( uzy uzz{@ 0 lH
where ¢ = cag and s = sig.
The conditions of equilibrium expressed in terms of polar coordinates are:
MU, +1'uurd+p'uzr +urr - udd+W =0
uroor pd  pz r '
pa . 1pd,, i 20 _

ur r opud pz r

“uzr +1'uudz+uuzz+ ﬁ
o r pd  pz r

Where w, wy, W, denote the components of body forcerarin the rq, z directions respectively so that:

+w, =0

z

ew, o wceod wy S

We 5 -@sind 4w, C o (5.11)
eWe g - R v :
@‘NZ H g W2

55: StressStrain Relations

The concepts and relationships developed in the previous sections are applicable to any material.
Different materials respond to application of forces in different ways and are shal/¢odifferent
constitutive behaviowgr In this sectiot h e H o o ielationshapvibétvgeen strains and stresses under
threedimensional conditions will be introducéd/le assume that the material is isotropic and it behaves
elastically. The relationshipdor the special cases of plane strain, plane stress arslyraxnetric
conditions will be derived from the general relationship.

Consider a simple element in a structure. In general the element will not be in a state of zero stress. It
will almost certainy be subjead to atmospheric pressure, however it may also be sebje¢ot
additional stresses. For example an element of concrete in a gravity dam, shegurés., will be
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subjected to stresses due to Hsfweight of the material, or an element in a steel section may be
stressed because of the rolling process or heat treatment used in its production

SotD S
O

(a) Initial State (b) Final State

Figure 5.5 Dam subjectedto water loading

If the element is subjected to an increase in stress it will respond by undergoing an increase in strain.
Many materials, to sufficient accuracy, respamthe following simple manner:
i) The increment of strain is directly proportionalthe increase in stress, i.e., if the increment in stress
is doubled/halved the increment of strain is doubled/halved.

i) The increment of strain due to the combined action of two sets of stress, e.g., a normal stress togethet
with a shear stress, is thaswf the strains due to each of the sets of stress applied individually.

Such materials are said to be elastic solids and are said to respond elastically.

Isotropic elasticity

An isotropic body is one in which theehaviouron an element within thieody does not depend on the
orientation of the element. Suppose an element of an isotropic elastic material sheguaréb. is
subjected to increases in both normal stress and shear stress. From the presigsgdiit can be seen

that the response to this loading can be found by summing the responses of the six components of the

loading as shown iRigureb..
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y y SW] z Sz
SXX SXX
- e
y lSW . lszz
(@) (b) (c) X
y — Syx z — Szx z — Szy
Sxy SXZ SyZ
~ X ~ X ~

(d) () (f) y

Figure 5.6 Stress components

Consider componeng] in Figure5., it is clearfrom symmetry that the components of shear siggin
Ox Oy are all zero and also the, =e,,, H o0 o k ®rdusiaxiél belvavibur states that:

o _ O
L‘!(x - E
o a
g, = - 8 (5.12
E
. d
= - 33X
U, E

where E andn are material constants called Young's modulus and Poisson's ratio, respegtively.
consideration of the component (b) leads to the comuiubiat the only nozero strain components are:

(5.13

Similarly it is found that the response to the component (c) leads to theermstrains:

o a



(5.149)

° = - 3%

S E
o _ 0,
U, =

Q( — l(')‘Ixx_ 3 5(/ l<'3"-22
g E
o U,- 3 (&
vy >£< 7z (5.15)

The shear strain incrememt, occurs due to an increment of shear steggsas shown irFigure 5.(d),
can becalculated by the following relation:

Dy (5.16)(a)

where G is a material property called the shear modulus. Similadyresponses to the stress changes

(e) and (f) are:

9, = E (5.16)(b)
9, = &g (5.16)(c)

The complete set of stress strain equations is given .5 andEq.(5.16).

Because of the isotropy of the material the stetssn relations expressed in terms of another set of
coordinate axes (X, Y, Z) should have precisely the same form.@s1E)andEq.(5.16). This implies

that the shear modulus must be ralate Young's modulus and Poisson's ratio. The relationship between
Poi ssond

the shear modulus, Youngdés modul us and

= £ 51
2(1+3 617

The complete expression for strain in terms of stress can be presented in a matrix format as:
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& gellE -3/ E- 3/ E 0 @
ée, UEé u &
&, 4¢3/ E 1FE 3/E ou@
él, ués/ E- 3/ E 1/ E 0 U
éq §é 0 0 G o ol %J (5.19
Oy ue ! %
®, Ue 0 0 0 0O 1/G O l}%
é ué u
&, & o 0 0O 0 0 1UGy§
It is often useful to be able to determithe volumetric strain and it is found that:
¢ = Um (5.19)

K

T Where{ = ) + U 1,is the volumetric strain

T a, :( g+, +,0 iscalled the mean stress

K‘L'th bulk modul
i 3(1_ 23) is the bulk modulus.

Expression for stress in terms of strain

In manycases it is necessary to calculate the stresses resulting from application of a set of strains to an
element. Clearly in such cases it is much more convenient to have an expression for stress in terms of
strain. There is no difficulty in developing an eggsion for the increment of shear stress in terms of
increment of shear strain from £516).

Uy, = G "y
u, = G .
uZX: G ZX

An expression for the increase in normal stress caused by the increase in normal strain may be found by
writing the first of the relations in E¢b.12) to Eq. (5.14) in the form:

o é1+3 60 ) o
O = & = 0 40 %) (5.20
C E = E

and then using E¢(b.19) to show that:

73



e Es
(1+3)(1- 23)

The quantityl is called the Lamé modulus. Similar expressions can be foursdfamnd s,,. Thus the
complete expression for an increment of stress in terms of an increment of strain is:

&, geo+ 2 G o = 0 @l
€ Ué (€
&y e @ & 2G > 0 g gc
él, ué o =y & 2G O (
& Hé i (62
éuxy g é 0 0 0 G 0 O g ;hf
(?t‘]yz ue 0 0 0 O G ou ;g
e ue ue
eu, ge O 0 0 0 0 Gy
or in a familiar matrix notation:
a = (5.22
where
&, e g+ 2 G > > (O
éo é° é
&, éujy & & a 2G o 0 (
éll - é o > i 2G 0 (
=¢,” , U= éU“ ,D=¢ (5.23
éuxy éoxy ‘? 0 0 0 G 0O O
Qﬁyz (?oyz € 0 0 0 0 G O
€, € e
eu,, 80, e 0 0 0 0 0 G

D is called the matrix of elastic moduli.

It is perhaps worth observing at this stage that the mbtrin Eq.(5.22) is symmetric and positive
definite. This is a general characteristic of elastic material and leads to the reciprocal theorem.

As stated before, in an isotropic material the form of the sétemi® relation $ independent of the
particular choice of coordinate system. Therefore, the relationships giver(5t18cndEq.(5.21) can be
written for cylindrical polar coordinates as:

e gel/E -3/ E- 3/ E 0 @
Leyes/ E 1/-E 3/ E 0 50
0, ués/ E- 3/ E 1/ E 0 U
gL; %09 o o0 we o oY %g) 5249
& ué 0 6o
€,,U€ 0 0 0O 0 UG 0 Ug,
e ue ug
6, Ué o 0 0O 0 0 UGH§
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i, g o+t 2G o > 0 @@

o U 6 g (@

Seag e & & 26 > 0 gtg

&, ué o > 4 2G 0

& Fé 0 T Ou% (5.29
ela U ¢ o e

%dzge 0 O 0 O G Ol:l:ﬁ¢

6,7 U é ué

e, ge O 0 0 0 0 Gu®

Plane stress, plane strain and axial symmetry

There are certain circumstances in which it is not necessary to carry out a fultithezesional
analysis. One of these is showshematically inFigure 5., where a uniform thin plate is subjected to
edge loads parallel to the plane of the plate. Clearly the increments of strgssgssy, are all zero on

both faces of the plate. Is ifound that to sufficient accuracy these are zero throughout the entire
thickness of the plate. It thus follows that the increases in stresses within the body are completely
specified bysy, Syy, Sxy. It can also be shown that to sufficient accurdwsé stresses do not vary
throughout the thickness of the plate and hence depend omyyodout not ore. The stress strain
relationship can then be written in the form:

U, = =

o (GW - 3. [

G, =*—" (5.26)
= (0 +F

Figure 5.7 Plane stress of a thin plate

The increments in stresses can be expressed in terms ofrémaeémnts in strains as:
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. SE/(13) Eg -2 3ﬂ (

e“lxx <
gﬂw %SE(//- 3 s B 1“% (5.27)
g'lxv He 0 0 G U%

The situation illustrated ifmigure 5. and described mathematically by.E&R6) andEq(5.27) is known
as "plane stress".

The second case in which a similar simplification is possible is when a long prismatic body, such as the
one shown schematically irigures. is subjected to loads which are uniform along the length of the
body and are in the plane perpendicular to the axis of the body.

Figure 5.8 Plane strain of a bng prismatic body

For these conditions it is found that the axial displacemgist zero in the central portion of the body,
that is the region remote from the ends, and the remaining two components of displacement are
independent of z. This leads teettelations:

e, g @
e u

&x Q
eJ, u @

In terms of the remaining components of strain, it follows from(&81)that

e, ges 2G > o @

€. ueé u

&y gg o & 2 Guﬁ (5.28)
&, He O 0 BE

The only remaining nezero component of stress can berfd from Eq(5.15) is:
L= 4 0+ ,) (5.29
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The situation illustrated iAigure 5. and described mathematically by.£§.28)andEg. (5.29) is known
as "plane strain”.

The third case for which another simplified form afessstrain relationship can be presented includes
bodies of revolution which are subjected to-symmetric loading. These bodies constitute another
important category of structures which are essentially two dimensional in nature. Such structures are
called axisymmetric continua.

A typical axisymmetric body is shown iRigure 5.. The zaxis is the vertical axis about which the
geometry and loading is symmetric, the r axis is radially outward§ anthe polar angle.

z

Figure 5.9 Axis-symmetric body

The nonzero displacement components are in z and r directions only and do not vafy siithe the
prescription of symmetry indicates that the tangemttmhponent of displacement is zero everywhere.
Therefore, the vector of strain components forsgxnmetric continuaan be derivedrom Eq (5.4) as:

e g enpu v

o U e
T

e, u eppyd z

e u e

&, 0 & U ¥ L

The corresponding vector of stresses is:

The stressstrain relationship for axgymmetric continua consisting of isotropic materials can be found
from Equation(5.25) as:

o,

el, g &+ 2G > > o8
o U 6 U
dosgp g & F 26 o u;@‘ (5.30)
&, u é & > 4 2G ulp
é. U é L‘Je
éu, U é 0 0 0 U;é

The situation illustrated iRigure5. and described by E¢5.30) is known as 8xial symmetry".
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Problem1

In a geological site a layer of silt was found which is incliag2D to the horizontallhe global and local
coordinate systems were set up as shown in Figarét a point on the silt layer the vertical stress is

300 kPaand the horizontal stress is 250 kPa. Recalling that tensile normal stresses are considered to be
positive, the stress tensor (in the global system of coordinates) is;

O

e, G, 0,9 250 0 0 o

o (S o o U_ é l]

u=di, u, U,;=g 0 -300 0 j (5.3
éjzx l‘jlzy lrjzzﬂ é 0 0 - 25%

The unit vector normal to the surface is:

asin(20) @
& o}

n =ae0s(20)6
& | 0
(; =

Hence the traction acting on the seam is given by:
el,Lg & 250 O 0 20.342(@ e- 85.505¢

s

u_é 6 _é \
eLu=e 0 -300 0 0.939%=5 281.908(kPa) (5.32)

L6 60 O -2508 0 g O §
The components of traction normal and tangential to the seam are given by:

T,=- 0.3426 85.505- 0.9397 281.908= 294.15 kPa

Ti=- 0.9397 85.505+0.3420281.908=16.07 kPa
Yy

Global Coordinates

Local Coordinates

Figure 5.10: Local and global coordinates

Problem2
In a plane system the stress in global coordinates is:

. _630.0000 34.6410

u= (MPa) (5.33
£34.6410 40.000
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Calculate the traction on a plane making an angle of 120° with-axéesx
Answer: Tx=86.6025 MPa T, =50 MPa

Problem3

A local set of coordinates with the X axis inclined at 30° to the axis and the Y axis inclined at 120° to the x
axis. If the stresses in the global (X, y) system are given hysBqw that the stress components in the local
(X, Y) coordinate system can be given by

gloo 0
=4 Mpa
Ego 20(p)
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Chapter
INTERPOLATION

In the finite element method the body to be analysed lehrap into a number of elements that join with

each other at a discrete number of points or nodes. The method is an approximate one and so it is not usu:
to determine the displacement of every point in every element. In fact the displacement is oateewl

a number of nodes and the displacement at any other point is inferred from these nodal values by
interpolation.

In the previous section a general procedure for calculation of the stiffness matrix of a finite element was
explained. One of the n@j steps in the procedure was the establishment of the relationship between the
strains or displacements within the element and the nodal displacements. It was shown that the value of
a quantity at any point within an element can be related to its nold&svasing the shape functions.

The aim of this section is to present a general method for derivation of the shape functions for various
finite elements.

6.1: One-Dimensional Interpolation

A polynomial interpolation is used in derivation of the stiffnessrix for most of the finite elements.

The use of polynomial functions allows high order elements to be formulated. In this section linear and
quadratic interpolation functions are discussed.

Linear interpolation

Consider that a continuous furanti w(x) is to be approximated over the intervax¢x, using a linear
function (Figure 6.1). Thevalues of the function at point 1 and 2 &ve andW,, respectively. Assume
that the function w(x) can be approximated by a lineaction such as:

W(X) =a, +a, X (6.1)
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X1 Xo X

Figure 6.1 Linear interpolation

where a and a are unknown coefficients of the function. The coefficients can be determined from the
known values at points 1 and 2.

W =w(x)=a +a, X
W, =w(X,)=a, +a, X,

This set of equations can be solved for the unknown coeftscie

- WX, - WoX, - W, - W,

Xy - Xg Xy- Xy

Therefore the value of the function w at any point x within the interndad®x, can be expressed as:

— W1X2 B W2X1 + Wz B W1
= X
Xy Xy Xy Xy

w(X)

Rearranging the above equation results in:

W0 = X, - X W, + X- X, w,
Xy- Xy Xy= Xy
or:
w(X) =N, (X) W, +N,() W, (6.2
X, - X X- X
where N, (X) = —2 and N, (X) = L are called the shape functions.

2 1 2" Xg
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The shape functions depend only on the geometry of the nodal points and the type of the interpolation
function used. The shape functiongXY and N(x) vary linearly betweenpand % as shown inFigure6.2.

Note that the value of the shape functioifpdNis 1 at pointl and zero at poir#. Similarly the value of the

shape function px) is 1 at point2 and zero at poiri.

NEOA
1 2
1
N1 N>
0 >
X1 X2 X

Figure 6.2 Linear shape functions

Quadratic interpolation

Consider that the value of a continuous function w(x) is to be approximated over the intéxd¢ak x
using a quadratic functiorFigure6.3). The values of the function at point 1, 2 and 3 are W, and
W3, respectively.

X1 Xo X3 X

Figure 6.3 Quadratic interpolation
The function w(x) can be approximated by a polynomial quadrattibmsuch as:

W(X) =8, +a, X +8, X’ (6.3)

Wherea to & are unknown coefficients of the function. The coefficients can be determined from the
known values at points 1, 2 and 3.

W, =w(x)=a +a, X1+a3X12

82



W, =w(x,) =8, +8, X, ta, X;

W3:w(x3):a1+a2x3+asx§

This set of equations can be solved for the unknavefficients:

(X5 = XXX W, + (X5 - X )XX, W, + (X, - X,)X X, W,
(%, - %,)(X, - X3)(Xs - X,)
_ (G- X)W, + (X5 - X)W, + (X - X)W,
- (%, - %, )%, = X5 )(X5- X,)
(X, - X)W, + (X5 - X)W, + (X, - X,)W,

(Xl' Xz)(xz B X3)(X3 B Xl)

& =-

Substituting @ & and a into Eq (6.3) results in a quadratic intesfation as a function of nodal values:

W(X) = Nl(X) Wl t NZ(X) W2+ N3(X) W3 (64)

b - %) - %))

(X3' X1XX3' Xz)

(X ) Xz)(x j Xs) — (X B Xl)(x - Xs)
(Xl' Xz)(xl' Xa)’ Nob9 = (Xz - Xl) (Xz - Xs)

shape functions.

Where N, (X) = , No(X) = are the quadratic

The quadratic shape functions vary quadratically betweamdc % as shown irFigure6.4. The value of
the shape function Nx) isl atpoint 1 and zero at points 2 aBdSimilarly the value of the shape function
N2(x) is 1 at poinR and zero at pointsand3, and the value of the shape functiojpdNis 1 at point 3 and
zero at points 1 a2l

Figure 6.4 Quadratic shape functions

The method used above for calculation of the linear of quadratic shape functions can be applied to
calculate higher order interpolation functions. However, for higher grdignomials it is difficult to
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