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SUMMARY

The mechanical response of cohesionless granular materials under monotonic loading is studied by
performing molecular dynamic simulations. The diversity of shapes of soil grains is modelled by using
randomly generated convex polygons as granular particles. Results of the biaxial test obtained for dense
and loose media show that samples achieve the same void ratio at large strains independent of their initial
density state. This limit state resembles the so-called critical state of soil mechanics, except for some stress
fluctuations, which remain for large deformations. These fluctuations are studied at the micro-mechanical
level, by following the evolution of the co-ordination number, force chains and the fraction of the sliding
contacts of the sample. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The stress–strain response of granular materials shows an incrementally nonlinear behaviour [1–3]
when they are subjected to external loading. The macro-mechanical behaviour stems not only from
phenomena occurring at the contact scale, but also from mesoscale arrangements such as fabric
evolution [4] and force chains [5, 6].
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Numerical simulations using the discrete element method (DEM) have become a valuable
tool in the study of different phenomena occurring at the micro- and meso-mechanical scale in
granular materials [7, 8]. The mechanical response of the media is obtained by modelling the
particle interactions as a dynamic process and using simple mechanical laws in these interactions.
Generally, discrete models use discs or spheres to reduce the time of calculation; however, this
kind of models does not consider the effect of particle shape on the mechanical behaviour. Several
researchers have studied this influence. Experimentally, Holubec and D’Appolonia [9] using fine
to medium sand concluded that the variation order of the mechanical properties due to the shape
of the particle, could be of the same magnitude as the variation due to the changes in density.
By means of numerical simulations with DEM, Mirghasemi et al. [10] demonstrated that the
particle angularity has an important effect in the compressibility and shear strength of the granular
media. Matuttis [11] studied the effect of particle shape on the stress distribution in heaps of
granular media. Matsushima and Saomoto [12] presented a method to construct irregularly shaped
grains based on images of real granular material. Nouguier-Lehon et al. [13] studied in biaxial
test simulations the influence of particle shape on the so-called critical state. Alonso-Marroquin
et al. [14] show also that angularity significantly affect the force distribution inside the granular
media, and hence the elasto-plastic response of the materials. The influence of irregular shape of
polygonal particles on the structural changes in granular material has also been investigated using
simulations of biaxial [15] and shear-cell [16] tests. It is therefore very important to take into
account the particle shape in order to have a more realistic soil representation.

Force fluctuations under quasi-static loading is another aspect that is affected by particle shape.
They appear as a consequence of frictional instabilities. Fluctuations are observed in glass bead
samples [17] and packings of glass spheres [18]. Experimental biaxial tests show evidence of
dynamic instabilities at the critical state [19]. Erratic slip–stick motion at the critical state is
interesting, owing to its potential analogy with earthquake dynamics [20].

In this paper, molecular dynamics simulations of biaxial test are used to investigate the behaviour
of granular materials under monotonic loading. We investigate stress fluctuations along with shear
band formation, and also the dependency of the macroscopic friction on the contact friction. In
order to include the effect of the diversity of shapes of a realistic soil, the grains are represented by
randomly generated convex polygons. The overall behaviour is similar to the common observations
in experiments and numerical simulations with circular particles. We show that the granular media
evolve towards the critical state, where fluctuations of stress and abrupt collapse of the number of
sliding contacts characterize the dynamic response.

The outline of this paper is as follows. The discrete model and the sample specifications are
introduced in Section 2. In Section 3 we show that the biaxial test simulations reproduces the
main features of the critical state in soil mechanics. The stress fluctuations and its correlation to
the micro-mechanical variables is presented in Section 4. Finally, in Section 5 conclusions are
exposed.

2. MODEL

The random generation of the convex polygons used in this model is carried out by means of a
Voronoi tessellation. This is a simple method to discretize the media without introducing any kind
of anisotropy [21]. The number of edges of the polygons is distributed between 4 and 8 for 98.7%
of polygons (Figure 1).
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Figure 1. Distribution of number of edges. Five different generations, each one with 3600 polygons, were
used in the calculations. The bars show the standard deviation of the data.

Once the sample has been created each particle is subjected to interparticle forces and boundary
forces. It is assumed that particles interact elastically with each other. The polygons can neither be
broken nor deformed, but they can overlap when they are pressed against each other. This overlap
represents the local deformation of the grains. This approach has been thoroughly used to model
many different processes, such as strain localization and earthquakes [8], fragmentation [22], and
damage [23]. When all forces Fi acting on the particle i , Fc from interparticle contacts and Fb

from boundaries are known, the evolution of the position xi and orientation �i of the i polygon is
given by the integration of Newton’s equation of motion:

−mi ẍi +∑
c
Fc
i +∑

cb
Fb
i = 0 (1)

−Ii �̈i +∑
c
lci × Fc

i +∑
cb

lbi × Fb
i = 0 (2)

where mi denotes the mass of particle i , Ii its moment of inertia and l the branch vector which
connects the centre of mass of the polygon to the application point of the contact force. Each
particle has two linear and one rotational degrees of freedom. In the following section the force
laws are introduced.

2.1. Contact law

The contact force results from the overlap area a between particles. In Figure 2 the configuration
of a particle contact is presented, P1 and P2 represent the intersection points between the edges
of the polygons; the segment that connects those points gives the contact line S= P1P2. This
vector defines a co-ordinate system at the contact (n̂, t̂ ); where n̂ and t̂ =S/|S| normal to it give
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Figure 2. Schematic representation of a particle contact, the overlapping area a
is indicated by the shaded zone.

the direction of the normal Fn and tangential Ft components of the contact force. The point of
application of the contact forces is taken as the centre of mass of the overlap area [24].

The contact force is calculated as

Fc = − kn�n̂ − kt�t̂ (3)

where kn and kt are the stiffnesses at the contact in the respective directions. The deformation length
� is equal to a/|S|. The tangential force is introduced by an elastic spring whose displacement �
is equal to 0 for new contacts, while for old contacts the tangential spring-length is obtained as
follows:

� = �′ + vct �tMD (4)

where �′ is the previous length of the spring, �tMD is the time step of the molecular dynamic
simulation, and vct the tangential component of the relative velocity vc at the contact

vc = vi − v j + wi × li − w j × l j (5)

Here, vi is the linear velocity and wi is the angular velocity of the particles in contact. The elastic
tangential displacement � at the contact increases until the Coulomb’s sliding condition |Fc

t | = �Fc
n

is reached. Here, the sliding condition is enforced keeping constant the tangential force. Finally,
we introduce a viscous force (Equation (6)), which is necessary to maintain the numerical stability
of the method and to obtain a quick convergence to the equilibrium configuration

Fc
v = − m(�n · vcn · n̂c + �t · vct · t̂c) (6)

where m = (1/mi +1/m j )
−1 is the effective mass of the two particles in contact, and �n and �t are

the damping coefficients. This damping force leads to velocity-independent normal and tangential
restitution coefficients. These coefficients of restitution are given by the ratio between the relative
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Table I. Parameters used in the model.

Parameter Ratio Value

Friction coefficient � 0.55
Normal stiffness kn 1.6 × 108 N/m
Normal damping coefficient �n 4000 s−1

Stiffness ratio �= kt/kn 0.33
Viscosity ratio �t/�n 0.33
Time ratio t0/ts 1000
Time step �tMD 2.5 × 10−6 s

velocity before and after the collision. In particular, the normal restitution coefficient �n and �n are
related by the following expression [8]:

�n = exp

(
−��n√
	2
n − �2n

)
(7)

where 	n =
√
kn/m0, and here m0 is the mean mass of the polygons. Using the parameters of

Table I, we obtain a value of �n equal to 0.73. This relatively low dissipation allows us to reduce
viscous effects during loading.

2.2. Boundary conditions

During the simulation, the granular sample is confined by four rigid walls. These walls always
maintain their horizontal or vertical orientation. Boundary forces are applied on each grain in
contact with these walls. The walls are frictionless, so they transmit only normal forces to the
polygons in contact with them. When one of the vertices of a polygon penetrates one of the walls,
a force, proportional to the penetration length �, is applied on the polygon. This boundary force
Fb
n is oriented in normal direction n̂ to the wall (8)

Fb
n = −kn�n̂ (8)

Fb
v = −mi�nvcn (9)

Viscous forces Fb
v in wall–polygons interactions are also considered (Equation (9)), where mi

is the mass of the particle in contact with the boundary wall, and �n the damping coefficient in
normal direction. The boundary force is calculated for all the cases of interaction between walls
and polygons in the same way. Finally, the displacement of the walls and the total force on them
are used to determine the global stress and strain of the assembly.

2.3. Parameters of the model

The parameters used in the model are presented in Table I. The interparticle friction coefficient was
chosen � = 0.55, which yields similar values of macro-mechanic friction angles to those obtained
in real materials as gravel or sands [25]. The stiffness ratio � = kt/kn as well as the viscosity ratio
(�t/�n) were taken 0.33. The normal stiffness kn was taken 1.6×108 N/m; and the normal damping
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Figure 3. Cumulative distribution of polygon areas. The solid line shows the fit of the data using an error
function. The distribution is calculated for 1.8 × 104 polygons.

(a) (b)

Figure 4. Sample configuration at the end of the construction process: (a) dense and (b) loose media.

coefficient �n = 4000 s−1. The viscosity factors were selected to preserve numerical stability and
to reduce the acoustic waves produced during loading. Finally, the time ratio in Table I is the
ratio between the time of loading t0 and the characteristic period of oscillation ts = √

m0/kn. The
value of ts determines the selection of the time step �tMD. We use a 5th order predictor–corrector
integration scheme, which preserve stability whenever �t<0.10 × ts [26].

2.4. Sample construction

The distribution of areas of polygons is symmetric around its mean value 1 cm2, and follows
approximately a Gaussian distribution with variance of 0.36 cm2 (Figure 3). After generation of
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the polygons, the sample is confined by applying a centripetal gravitational field to the particles
and on the walls, oriented to the centre of mass of the assembly. Then the sample is compressed
isotropically until the desired confining pressure is reached. In order to generate dense samples,
the interparticle friction is set to zero during the construction. The loose samples are created
taking damping coefficients 100 times greater than those used in the test stage. In both cases, the
parameters are set to the values shown in Table I after the preparation of the sample. Figure 4
presents the sample configuration at the end of the construction process, for both dense and loose
media. The sample specifications used to perform the simulations were: 1000 kg/m2 for the density
of particles, system size of 400 polygons, and a unitary shape ratio (width/height).

3. BIAXIAL TEST SIMULATIONS

In this test, the pressure in lateral walls 
2 is kept constant and the horizontal walls (axial direction)
are moved at constant rate inducing deviatoric stress. The stress–strain behaviour at the macro-
mechanical scale, for dense and loose systems, and its dependence on some mechanisms at the
micro-mechanical scale are discussed. The effect of the interparticle coefficient of friction on the
macro-mechanical response of the media is also studied.

In the test the axial and lateral directions are indicated as 1 and 2, respectively. That is 
1 and
ε1 are the axial stress and strain, and 
2 and ε2 are the lateral components. The strains are defined
as follows:

ε1 = L0
1 − L1(t)

L0
1

(10)

ε2 = L0
2 − L2(t)

L0
2

(11)

where L1(t) and L2(t) are the dimensions of the system at the time t , and L0
1 and L0

2 the
dimensions at the beginning of the test. Stresses have the same sign convention used in soil
mechanics: compressive normal stresses are positive and tensile normal stresses are negative.

The parameters used to perform the biaxial tests are presented in Table II.

3.1. Macro-mechanical observations

Three different samples were used to evaluate the mechanical response of polygonal packings,
each one corresponds to a different seed used in the random generation. The initial void ratios of
the dense and loose samples are presented in Table III.

Table II. Parameters of the biaxial test.

Parameters Value

Default confining pressure 160 kN/m
Axial strain rate 0.02 s−1

Maximum axial strain 20%

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2008; 32:143–160
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Table III. Initial void ratio of the samples.

Sample Dense state Loose state

1 0.128 0.251
2 0.130 0.262
3 0.135 0.271

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ε1

ε1

Dense

Loose

Sample 1
Sample 2
Sample 3

0 0.05 0.1 0.15 0.2
0.05

0.1

0.15

0.2

0.25

0.3

V
oi

d 
ra

tio

Dense

Loose

Maximum dilatancy
Sample 1
Sample 2
Sample 3

(a)

(b)

(σ
1 

   
σ 2)

 / 
(σ

1+
σ 2)

Figure 5. Evolution of (a) the deviator stress and (b) void ratio of the samples.

Figure 5(a) shows the evolution of sin�= (
1 −
2)/(
1 +
2) with axial strain ε1 for the dense
and loose system. In general, the dense samples exhibit a higher initial stiffness than the loose ones.
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After the peak in the dense media, which is about 5% axial strain, a strain-softening behaviour
is observed. The loose media exhibit more frequent and bigger variations in the stress behaviour.
Additionally, a peak strength is not observed. Although an increase of fluctuations of the stress
are observed for both systems at large deformations, it presents a tendency to stabilize around a
value that one could consider as the steady state of the material (d sin�/dt = 0). The evolution of
the void ratio with axial strain is illustrated in Figure 5(b). Initially, the dense samples contract
and later the void ratio increases (dilatancy). For large axial strain values the void ratio reaches a
constant value. Comparing the evolution of dense samples in Figure 5(a) and (b) we note that the
maximum rate of dilatancy agrees with the peak strength (5% axial strain) which is expected on
soils. It is especially observed in samples 2 and 3. The loose samples reduce their void ratio during
the test (Figure 5(b)), and it tends to a constant ratio near to 18% axial strain. The void ratio in
both dense and loose samples varies until it achieves the same value near to 0.23 corresponding to
18% axial strain. In this stage, the granular medium is deformed at constant volume and with the
same approximate value of deviator stress, which corresponds to the critical state of the material
and is independent of the initial sample density [27]. All these features reproduce the asymptotic
behaviour of soils obtained in laboratory experiments [28].

3.1.1. Shear bands. Strain localization has been experimentally studied by several researchers in
the last two decades, e.g. Vardoulakis [29], Desrues [30] and others. Using the DEM Cundall [31],
and Bardet and Proubet [32] have studied this phenomenon. Theoretically, some authors have also
investigated strain localization, for instance Vardoulakis [33], or Chambon et al. [34] by using the
so-called second gradient method. In this paper, a brief analysis of strain localization is performed
by studying the displacement of the individual particles. In Figure 6 the displacement vectors of
the particles for the dense assembly are presented. At the beginning of the test, the displacements
are very small and one can observe approximately a symmetrical deformation around the centre
of the sample (Figure 6(a)). As the axial strain increases and before the peak strength is reached
a slight tendency to strain localization is observed. After having overcome the peak strength, the
particle displacements seem to define independent bodies with different displacement directions
(a clearer strain localization). This localization persists as the loading increases, and becomes
clearer around 8.9% axial strain (Figure 6(b)), where two ‘shear bands’ are observed. After peak,
these shear bands are not constant in time. In fact, there are stages in which clear shear bands are
observed, but they typically disappear, leading to a stress falloff. These falloffs, as we will see in
Section 4, are related to force chains collapse and therefore to restructurations of the media that
hinder the persistence of the shear bands. The particle displacements of Figure 6(a) and (b) are
taken from two consecutive time intervals, which correspond to an increment of 0.1% of axial
strain. Figure 6(c) presents the displacement at 20% axial strain measured from the particle initial
position. Here, three bodies with different direction of displacement, and the areas (shear bands)
defined between them are visible.

Although the particle displacements of loose samples are not shown, their evolution reflects
the force chains collapse and consequent rearrangement of the particles within the sample. This
is observed in the large displacements of the particles which are associated with the drops of the
stress–strain behaviour [35]. Strain localization is not clear in loose media.

Concerning shear band orientation, most of the experimental data from biaxial tests on sand
report that this orientation lies between the Mohr–Coulomb solution �C = 45◦+�/2 and the Roscoe
solution �R = 45◦ +�/2 [36]. The latter is defined by the angle of dilatancy �= arcsin(d�V/d),
being d�V and d� the increments of volumetric and deviatoric strains at failure [37]. We observe
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(a)

(c)

(b)

Figure 6. Displacement of particle centres within a dense sample at three axial strains:
(a) 1.2%; (b) 8.9%; and (c) 20% of total.

that the inclination angle of the shear bands in Figure 6(c) are approximately between 52 and
58◦. In this case, for �micro = 28.8◦ (Figure 8) � ≈ 26◦ and � ≈ 15◦ the predictions of Mohr–
Coulomb and Roscoe solution define with very good agreement the limits for the angles found in
the simulation.

3.1.2. Macroscopic friction. An approach to connect the Coulomb friction at the grain level to
the macro-mechanical friction is to construct the Mohr–Coulomb failure surface of the granular
sample. This failure surface can be obtained from the envelope of the Mohr circles at the peak
stress value from biaxial tests [36]. The tests were carried out on dense samples, at three confining
pressures: 80, 160 and 320 kN/m. Different methods are used to describe the failure surface of
granular soils. In the following analysis, as used in traditional soil mechanics, we assumed that the
failure surface is linear. Figure 7 shows the failure envelope of a granular sample with interparticle
friction coefficient �= 0.55 that corresponds to an interparticle friction angle �micro of 28.8◦
(�= tan�). The envelope is plotted as a tangent straight line to the Mohr circles, and the angle
of friction of the bulk material is approximately 41◦. In our simulations, the macroscopic angle of
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Figure 7. Mohr–Coulomb failure envelope constructed from biaxial test and Mohr circles.
Interparticle friction angle �micro = 28.8◦.

friction was found to be independent of system sizes varying from 100 to 2000 particles. Larger
system sizes were not used.‡

If we compare this result with the one obtained by Bardet using DEM with disks [38], we can
then observe the important influence of particle shape on the macro-mechanical angle �peak of
the medium. For instance, using very similar values of �micro, 28.8

◦ for polygons and 26.5◦ for
disks, the obtained values of �peak are 41 and 22◦, respectively. The ratio �peak/�micro is then
equal to 1.42 for polygons and 0.83 for disks. Furthermore, as mentioned in the previous section,
different macro-mechanical angles are correlated to different orientations of strain localization
(shear band). In the case of disks, if particle rotation is constrained, as in Reference [38], a value
of �peak = 41◦ is obtained. In such case, although �peak is equal to the value for polygons, the
sample dilatancy is almost completely hindered and therefore the stress–strain behaviour of the
sample is highly affected. For example, no correlation between peak strength and maximum rate
of dilatancy is observed. All these observations confirm the important role of particle shape on the
global behaviour of granular media.

In order to study the effect of the interparticle friction �micro on the macro-mechanical friction
angle �macro, different interparticle friction coefficients and five different samples were used in
the simulations. Additional to the friction angle at the peak stress �peak, the friction angle at the
critical state �critic was also calculated. Figure 8 shows for the five samples the values of �peak
and �critic obtained from variations of �micro. It is observed that at very low values of �micro the
macro-mechanical angles are quite similar. For values of interparticle friction angle larger than 15◦
the granular samples develop a clear peak strength �peak (value different from �critic), while the
�critic value remains approximately constant. The last agrees with the experimental results obtained
by Skinner [39], excluding the results from micro-mechanical angle close to zero. These results
suggest that, except at small values of �micro where microscopic friction plays an important role,
the friction angle mobilized at the critical state �critic is independent of the interparticle friction
coefficient. This particular feature has been also observed in numerical simulations with circular

‡Simulations of much larger number of particles are limited by the architecture of the programme, which requires
static storage allocation for all variables.
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particles [20]. The non-dependence of macroscopic friction on contact friction is attributed to the
spontaneous formation of rotational patterns, such as the vorticity field shown in the part (b) of
Figure 6, and clusters of particles with intense rolling. Those deformation modes have been seen
to reduce considerably the bulk friction with respect to the expected value of the simple shear
deformation [20].

Note that setting �micro to zero, a value of �macro close to 6.0 is obtained. Although this value of
�macro is calculated from the average of the deviator stress, the frictionless granular media offer a
resistance to shear. Similar results have been found experimentally by Skinner [39], in theoretical
work by Cambou [40], and more recently in DEM using disks by Kruyt [41]. This supports the
idea that interparticle friction is not the unique cause of the macroscopic frictional behaviour
of granular materials, in fact, it might be certainly a consequence of the non-local behaviour of
granular assemblies where the contact scale is not the basic constitutive element.

4. STRESS FLUCTUATIONS

According to the critical state soil mechanics, large shear deformations drive the granular specimen
to limiting state. This state is characterized by an isochoric deformation, where the stress ratio and
the frictional dissipation stay constant [28]. This is not exactly what our simulations show. Indeed,
we find that samples with different densities reach the same critical state, where the density and the
stress ratio stay approximately constant, except for some fluctuations. In this section we investigate
the onset of such instabilities exploring the time evolution of the microstructural variables. The
simplest way to explore micro-structural arrangement of the granular sample is by following the
evolutions of the following two internal variables: (1) the co-ordination number and, (2) the fraction
of sliding contact.
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The co-ordination number Z is defined as the average of the number of contacts per particle. The
evolution of the co-ordination number of one of the samples is presented in Figure 9. In our model,
edge-to-edge contact, as well as edge-to-vertex contact, are treated in the same way as explained
in Section 2.1. At low axial strain values, the dense system contracts and as a consequence a small
increment of Z is observed. This is followed by a decrease of the Z value when the system dilates.
This decrease is associated with the formation of force chains along the direction of loading and
the breaking of interlocking between particles. As a result, each particle begins to lose contacts.
This is macro-mechanically observed by the trend of dense samples to increase their volume. In
contrast, the loose granular sample tends to a denser structure, and therefore new contacts are
generated. Both samples around 8% axial strain reach a co-ordination number Z close to 3.3.
Here, the media are highly susceptible to collapse.

In Figure 10 the direct relation between stress drops and collapse of force chains is presented.
We selected one of the several stress drops as depicted in Figure 10(a). Then we plot the contact
forces of the particles just before the stress drop Figure 10(b) and right after it Figure 10(c).
Comparing these two force networks, one can see that some of the principal force chains after the
stress drop have collapsed and therefore disappeared. This collapse drives the system to an internal
rearrangement, in which particles undergo big relative displacements. The last is confirmed by
the study of the displacement field of the individual particles [35], where big displacements of
the particles are associated with abrupt reductions of the stress. Between two collapses the force
chains build up leading to an increase of the macroscopic friction coefficient.

The micro-structure of these collapses can be also visualized in the population of the sliding
contacts. Figure 11 shows the evolution of the ratio between the number of sliding contacts and the
total number of contacts. The sliding condition is given by the Coulomb’s condition, Fc

t = � · Fc
n .

Initially, the dense medium has more sliding contacts when it contracts. Later when the sample
begins to expand the number decreases. In general, the evolution of the sliding contacts for both
systems during loading, consists of stages where their number increases, and short time ‘failures’
where the fraction of sliding contacts jumps down.
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Figure 10. Stress drops (a) and their correlation with collapse of force chains: force network just before
the stress drop (b) and right after it (c). The width of the lines is proportional to the magnitude of the
contact force. The spatial correlation of the contact network in a packing of polygons is more pronounced
than in the case of disks. This is reflected in the exponential tail of the distribution of contact forces.
In the case of polygons, it is given by N ( fn) ∼ exp(−x1.6) [42]. This is different from the distribution

N ( fn) ∼ exp(−x) of circular particles [43].

Figure 12 compares the stress–strain evolution to the fraction of sliding contacts for the dense
and loose sample. We observe more initial stability, with low frequency of jumps in the stress,
in the dense sample. This stability is related to the average co-ordination number of the medium
(Figure 9), and the bigger this value the bigger the resulting stability of the granular skeleton.
Although the jumps observed in the stress–strain behaviour are less frequent than ones in the
sliding contacts (Figure 12), each stress jump is associated with an abrupt reduction of the number
of sliding contacts. Each stress drop matches with a collapse of the fraction of sliding contacts.

These jumps in the stress deviator are present in realistic experiments of granular soils, but on
a smaller scale [17, 18]. In our simulations the magnitude of these fluctuations can be partially
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Figure 11. Evolution of the fraction of sliding contacts ratio during the biaxial test.

attributed to the small size of the sample. One may ask the question if these fluctuations disappear
as the size of the sample increases. Previous numerical simulations with the same model show that
these fluctuations barely decrease as the number of particles of the specimen increases [44]. The
distribution of energy released of these fluctuations in shear cell experiments follows approximately
a power law [8]. The analogy of this statistics with the Gutenberg–Ritcher law suggests us that a
detailed investigation of the collapse of force chains will improve our understanding of earthquakes.

5. DISCUSSION AND FINAL REMARKS

In this paper the effect of the initial density of the sample and the interparticle coefficient of friction
on the macro-mechanical behaviour of granular materials was investigated. The results show that
at large strains the samples reach the critical state independent on their initial density, and they
deform at constant void ratio, volume and mechanical co-ordination number. We have proven that
for a wide range of contact friction coefficients, axial loading leads to the same critical state. In
this state the system approaches and retreats an unstable behaviour leading to strong fluctuations
of stress.

The stress drops were correlated to the evolution of the co-ordination number and the fraction
of sliding contacts. We found that the granular sample at critical state develop force chains highly
susceptible to collapse, driven to strong stress fluctuations. Stress collapses remove the contacts
from the sliding condition, and therefore lead to a temporal stability in the granular sample. Can
the stick–slip fluctuations in granular media be characterized by such natural tendency of the
system to build up force chains susceptible to collapse under large shear deformations?. To answer
this question we require a systematic study of the geometrical properties of the contact network.
Current geometrical characterization of force chains has been done for two-dimensional packing
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Figure 12. Evolution of stress and the fraction of sliding contacts with
axial strain: (a) dense and (b) loose samples.

of disks [45]. The extension of this method for complex shaped particles and its application to
monotonic shear deformations will potentially explain the nature of the stick–slip fluctuation on
sheared granular materials.
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