
Investigation of the Critical State in soil mechanics using
DEM

Andrés A. Peña∗, Ramon García-Rojo†, Fernando Alonso-Marroquín∗∗ and Hans
J. Herrmann‡

∗Bilfinger Berger GmbH, Gustav-Nachtigal 3, 65915 Wiesbaden, Germany;
Institute for Computational Physics, « University of Stuttgart », Pfaffenwaldring 27, D-70569 Stuttgart,

Germany
†EPCOS, Avda. Jose Ortega y Gasset 173, 29006 Mï£¡laga, Spain

∗∗School of Physical and Mathematical Sciences, The University of Queensland, St. Lucia, Qld. 4067 Australia
‡ Departamento de Física, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil;

Computational Physics, IfB, HIF E12, ETH Hönggerberg, CH-8093 Zürich, Switzerland

Abstract. The existence and uniqueness of the so-called critical state in soil mechanics is validated in our DEM simulations
of irregular polygonal particles. « For different particle shape characteristics„ The critical state is found to be independent of
the initial stress and density.» We retain low stress levels, since we do not take into account the crushing of particles. « »In
biaxial test simulations isotropic particles evolve toward a limiting state in which thesystem reaches a critical void ratio and
deforms with constant volume, deviatoric stress, fabric anisotropy, and mechanical coordination number. The last one has been
found to be the first variable to attain a critical value making possible for the rest of micro-and-macro-mechanical variables
the convergence to the critical state. In periodic shear cell tests, for large shear deformations samples with anisotropic particles
reach at the macro-mechanical level the same critical value for both shear force and void ratio. At the micro-mechanical level
the components of the stress tensor, the fabric tensor and the inertia tensor of the particles also « reach » the same stationary
state. By varying the aspect ratio of the particles we stated the strong influence of particle shape anisotropy on the parameters
that the granular packing « » at the critical state.
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1. INTRODUCTION

The stress-strain behavior of both dense and loose
sand under shearing is first described by Casagrande in
1936 [1]. He concludes that sand for large shear defor-
mations independent of the initial density state reaches a
limiting state (critical void radio) in which samples un-
dergo unlimited deformation without further volumetric
and stress increments. He also finds that the critical void
ratio is only dependent on the confining pressure, and
thus determines the so-called critical state line relating
the critical void ratioec and the effective normal stress
σ ′ as applied on the shear box test.

The existence and uniqueness of this critical state is a
major feature in soil mechanics since it is used to de-
fine post-failure behavior of many constitutive models
describing granular materials [2, 3, 4, 5, 6, 7]. The « »
critical state has been experimentally proven to be inde-
pendent of sample preparation and test conditions [8, 9].
Nevertheless, since there are some experimental difficul-
ties to characterize the pre-and-post peak mechanical be-
havior of dense samples arising from the strain localiza-
tion [3, 10]. There are some groups of researchers that
claimed that the uniqueness of this state is still an open

issue [11], and depends on the consolidation history of
sand specimens [12]. «The question of uniqueness is es-
sential in the investigation of granular materials at large
shear deformations, as is observed in fault gouges [13].
« The limit state has been investigated using DEM sim-
ulation of biaxial test [? ] and simple shear test [13]. An
important step towards the development on the microme-
chanical continuum modeling of granular materials for
large shear deformation is to determine how this state
depend on the initial conditions and the granulometric
properties of the granular assembly [? ] »

In this work, we investigate « the critical state » by
means of numerical simulations of polygonal packings
of particles. The samples consist of isotropic and aniso-
tropic particles in order to study the influence of particle
shape anisotropy on the global mechanical response of
granular media and its evolution to the critical state. We
show that the DEM simulations reproduce the main fea-
tures of the critical state in soil mechanics, namely, the
granular media evolve toward a stationary state in which
the system reaches a constant void ratio and deforms with
constant volume and deviatoric stress, and that for differ-
ent initial stress states the corresponding stationary val-
ues collapse onto a unique critical state line. The model



is described in detail in [14].

2. EXISTENCE AND UNIQUENESS

In order to assess the existence of the critical state, we
first explore the macro-mechanical evolution of granular
samples under biaxial compression. We characterize the
density state of the samples by the void ratioe.

The macro-mechanical response of the granular me-
dia is presented in Figures 1(a) and 1(b). The evolution
of sinφ = (σ1 −σ2)/(σ1 + σ2) with axial strainε1 for
the dense and the loose samples is presented in Figure
1(a). « Dense samples exhibit a peak and strain soften-
ing behavior, whereas in loose samples no peak is ob-
served » . However, both systems at large shear defor-
mations present a tendency to stabilize around a value
that one could consider as the steady state of the material
(d ˙sinφ/dt = 0).

The evolution of the void ratio with axial strain is il-
lustrated in Figure 1(b). The dense samples initially con-
tract and later dilates. The loose samples contract. For
large axial strain values the void ratio reaches a constant
value. The void ratio in both dense and loose samples
varies until it achieves a constant value between 0.23 and
0.26. This stationary value ofe is slightly different for
each sample, since the parameterse and φ at this sta-
tionary state depend on the granulometric properties of
the material [15, 16]. In this stage of large deformations,
the granular medium is deformed at constant volume and
with the same approximate value of deviator stress. This
state corresponds to the critical state of the material and
it is independent of the initial sample density [2].

Another issue we address is the evolution of the
anisotropy of the contact network of the granular pack-
ing [17, 18]. « This » is characterized using the de-
viatoric component of the fabric tensorF which takes
into account the orientational distribution of contact nor-
mal vectors~n. In Figure 2 a the evolution of the devi-
atoric componentF11−F22 of the fabric tensor withε1
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FIGURE 1. Evolution of (a) the deviator stress and (b) void
ratio of the samples used to asses the existence of the critical
state. Simulation parameters,p0 = 64 kN/m,N = 900 particles
andµ = 0.5. Samples correspond to different seed for sample
generation.
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FIGURE 2. Evolution of (a) the deviatoric componentF11−
F22 and (b) the traceF11 + F22 (coordination number) of the
fabric tensor of the samples. Simulation parameters,p0 = 64
kN/m, N = 900 particles andµ = 0.5.

is presented. One can notice that the contact network
starts from a rather initial isotropic configurationF11−
F22 ≈ 0, and that as soon as the shear process begins
anisotropy is developed. This anisotropy is a result of the
creation and reorientation of contacts and force chains
along the direction of loading. For the dense samples, the
anisotropy increases until the granular system develops
its peak strength i.e. the maximum anisotropy coincides
with the maximum strength (≈ 5 % axial strainε1). On
the other hand, the anisotropy in loose samples simply in-
creases until it saturates at a constant value between the
statistical fluctuations. In the strain-softening regime the
anisotropy of dense samples decreases until it converges
to the same value that the loose samples have reached.
Hereafter, the media deforms at a critical anisotropy. This
has been previously observed in numerical simulations of
biaxial tests with the DEM [19, 20, 21].

The creation and destruction of contacts can be stud-
ied by following the coordination numberZ. The trace
of the fabric tensorF gives the coordination number. «
In Figure 2b we present the evolution of the coordination
number of the samples ». At low axial strain values, the
dense system contracts and as a consequence a small in-
crement ofZ is observed. This is followed by a decrease
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FIGURE 3. Critical state line in (a) the compression plane
void ratio e - mean stressp′, (b) the stress planeq - p′, and
(c) the deviatoric fabric (F11− F22) - mean stressp′ plane.
System parameters,N = 900 particles andµ = 0.5. In (a) the
squares indicate the initial state of the samples. The circles are
the values that samples reach at the stationary state, and the
error bars correspond to 1 standard deviation of the analyzed
data.



of the Z value when the system start to dilate. This de-
crease is associated with the the breaking of interlocking
between particles and the related formation and collapse
of force chains along the direction of loading. As a re-
sult, each particle begins to lose contacts. Both samples
around 8% axial strain reach a similar coordination num-
ber Z close to 3.6. This critical coordination number is
the first signal that the granular packing is evolving to-
wards the critical state, and at the same time it enables
the contact network to reach an steady structure.

We also perform biaxial experiments using differ-
ent initial confining pressuresp0 in order to assess the
uniqueness of the critical state, i.e., that there is a unique
void ratio for each state of effective stress at the critical
state. Since our model does not take the crushing of par-
ticles into account, we retain low stress levels.

In Figure 3a, we plot in the compression plane (void
ratio e - mean stressp′ (p′ = (σ1 + σ2)/2)) the initial
states of the samples (blue squares) and the values of
void ratio that the loose and dense samples attain at large
deformation (red circles). One can see that the same limit
state is reached for all the samples defining a unique
steady state line. This line can be fitted by a function of
the form,

e(ere f ,n) = ere f exp(−n (p′/p′re f)), (1)

where ere f and p′re f are the void ratio and the mean
stress at the critical state corresponding to the reference
initial confining pressure «p0,re f = 16kN/m», andn is a
constant. The same collapse of the stresses at the critical
state (red circles) onto a steady state line is observed
in Fig. 3b, in which the stress plainq− p′, beingq =
(σ1−σ2), is depicted. The stress ratioq/p′ at the critical
state defines the strength parameterM, which for our
simulations is related to the critical state friction angle
φcs as,

M =
qcs

p′cs
= 2 sinφcs . (2)

The range of variation of the critical friction angle found
in our simulations, i.e. 22◦ ≤ φcs ≤ 27◦, is smaller than
the limits usually obtained for sand and gravel in three
dimensional experiments in realistic soils 26◦ to 36◦ [9,
16]. This is explained in terms of the higher coordination
number of systems in 3D [22], specifically, the higher
the coordination number the higher the strength of the
material as presented in Figures 1a and 2c.

The previous simulation results support the idea of
uniqueness of the critical state [2, 3], in which a crit-
ical/steady state line links the critical states describing
combinations of effective stresses and void ratioe: q : p′.

Finally, we also evaluate the critical anisotropy for
different stress sates, and we find that a critical state
line for anisotropy can also be defined. Although no
presented, the relation between structural anisotropy and
mean stressp′ is best fitted by a linear function.

Contrary to samples with isotropic particles, the sam-
ples with anisotropic particles do not converge to the crit-
ical state under biaxial compression. This is explained
in micro-mechanical terms as follows: whereas the
isotropic samples reach a critical value of anisotropy and
coordination number, the contact network of anisotropic
samples is still changing. The non-stationary state of
these variables is directly related to the evolution of the
particle orientation. Elongated particles are reoriented
during the shear process without converging to a steady
state. This micro-mechanical evidence, concerning the
non-stationary state of the fabric and particle orientation,
does not allow the systems to reach the critical state [14].

3. INFLUENCE OF ANISOTROPIC
PARTICLE SHAPE

In this section, we study the existence of the critical state
for samples consisting of anisotropic particles by means
of shear cell experiments. For this experiment, periodic
boundary conditions are imposed in horizontal direction.
The top and bottom have fixed boundary conditions.
The top and bottom layers of the particles are moved
in opposite directions so as to impose a constant shear
rate γ̇. Two different initial configurations are obtained
for the anisotropic samples, (i) the grains are oriented
parallel to the shear direction (called "horizontal" sample
- H), (ii) the grains are oriented perpendicular to the shear
direction (called "vertical" sample - V).

We find in our simulations that both the ratio of shear
force to normal forceFs/Fn and the void ratioe evolve
toward the same saturation value independently of the
initial anisotropy due to contact and particle orientations.
Anisotropic samples also reach the critical state.

At the micro-mechanical level the deviatoric compo-
nent of the fabric tensorF and inertia tensorI also reach a
stationary value independently of the initial particle ori-
entation. The stationary value of the deviatoric compo-
nent is directly related to the steady state at the macro-
mechanical level, and seems to be a micro-mechanical
requirement for the global steady state.

Although the results discussed herein and presented
in [14] correspond to dense samples and one value of
confining pressure, they are valid for different initial
density states and stress levels. These results validate
in our MD simulations the existence of the so-called
critical state in soil mechanics irrespective of any initial
condition and particle shape characteristics.

Furthermore, we consider dense samples with elon-
gated particles initially oriented in the vertical direction
and with the aspect ratiosλ = 1.0, 1.5, 2.3, 3.0 and 4.0.
The confining pressurep0 is kept constant at 16 kN/m,
and the shear ratėγ = 1.4 s−1.
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FIGURE 4. Effect of particle shape on the critical state val-
ues attained by the granular packings on shear cell tests, (a)
ratio shear - normal forceFs/Fn, (b) Void ratio, (c) coordination
numberZ, (d) deviatoric fabricFyy−Fxx, (e) deviatoric inertia
Iyy− Ixx and, (f) mean accumulated rotation〈Θ〉 of the particles
since the beginning of the simulation till a shear strainγ = 30.
The following aspect ratioλ are used: 1.0, 1.5, 2.3, 3.0 and
4.0. The shear ratėγ = 1.4 s−1. The error bars correspond to 1
standard deviation of the analyzed data.

In Figure 4 we present the average values of the macro
and micro-mechanical parameters for the different aspect
ratio at the critical state. We consider the ratio between
the shear and normal forceFs/Fn, the void ratioe, the
coordination numberZ, the deviatoric componentFyy−
Fxx of the fabric tensorF, the deviatoric component
Iyy− Ixx of the inertia tensorI, and the mean accumulated
rotation of the particles〈Θ〉. The data correspond to
the average of the variables once the critical state has
been reached. The standard deviation is also presented.
The evolution of the deviatoric componentsFyy−Fxx and
Iyy− Ixx with shear strainγ is also shown in Fig. 5. From
Figures 4 and 5 we conclude the following:

• The larger the anisotropy of particle shapeλ , the
larger the strength of the material at the critical state
(Fig. 4a).

• The larger the anisotropy of particle shapeλ ,
the larger the void ratio at the critical state and,
therefore, the larger the volumetric deformation
(Fig. 4b).

• For λ ≤ 2.3 the larger the anisotropy of particle
shapeλ , the larger the coordination numberZ of
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the particles. Forλ > 2.3 theZ value saturates and
remains constant (Fig. 4c).

• The larger the anisotropy of particle shapeλ , the
larger the fabric anisotropy at the critical state
(Fig. 4d).

• The larger the anisotropy of particle shapeλ , the
larger the anisotropy related to particle orientation
at the critical state (Fig. 4e).

• The larger the anisotropy of particle shapeλ , the
smaller the accumulated mean particle rotation an-
gle 〈Θ〉 (Fig. 4f).

• The larger the anisotropy of particle shapeλ , the
longer the time to reach micro-mechanical equilib-
rium in fabric and particle orientation (Fig. 5).

The above statements concerning the influence of
anisotropic particle shape on the macro-mechanical be-
havior of granular packings at the critical state, specifi-
cally, larger mobilized shear strength and more sensitiv-
ity to volumetric changes (dilatancy) with the increment
of the aspect ratioλ , are explained in terms of the bigger
interlocking among particles and the strong frustration
of rotation that such particles undergo during shearing.
Particle rotation is further hindered by the larger coor-
dination number that anisotropic particles develop due
to the larger relative flat surface. The last contribution
to the macro-mechanical observations is the larger struc-
tural anisotropy (fabric) attained by the anisotropic sys-
tems at the critical state.

4. CONCLUDING REMARKS

« The steady state that granular materials reach under
larger shear deformations have been assessed for differ-
ent initial conditions using isotropic and anisotropic par-
ticles. The existence and uniqueness of the critical state
is verified for isotropic shaped particles using biaxial test
simulations. Contrary of that, samples with anisotropic
particles do not reach the critical state under biaxiaL



test, but they do reach this state in the periodic shear
test. » Furthermore, the samples deform at constant void
ratio, shear stress, fabric anisotropy, particle orientation
and mechanical coordination number. The last one has
been found to be the first variable to attain a critical
value making possible for the rest of micro-and-macro-
mechanical variables the convergence to the critical state.
The uniqueness of the critical state is validated in our
simulations, when it is found that the critical states re-
lated to different stress states collapse onto only one crit-
ical state line.

« In the simple shear test », samples with anisotropic
particles reach the same saturation value in the steady
state independently of the initial orientation of the parti-
cles. This is related to the removal and reorientation of
the initial inherent anisotropy (fabric and particle orien-
tations) in the direction of the induced shear. It is found
that a steady value of fabric anisotropy and particle ori-
entation is a micro-mechanical requirement for the exis-
tence of the critical state.

Finally, by varying the aspect ratioλ of the particles
we can state the important effect of particle anisotropy
on the macro and micro-mechanical response of granular
media. « The evolution of the contact network, which
is characterized by bucking of force chains and stress
drops events, show a strong dependency on the particle
anisotropy, which is still under investigation. Another
important question to expore in the near future is whether
the critical state depends on the loading history of the
material.»
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