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Abstract. The existence and uniqueness of the so-called critical state in soil meslswalidated in our DEM simulations

of irregular polygonal particles. « For different particle shape dttarsstics, The critical state is found to be independent of
the initial stress and density.» We retain low stress levels, since we do eadntakaccount the crushing of particles. « »In
biaxial test simulations isotropic particles evolve toward a limiting state in whickyteem reaches a critical void ratio and
deforms with constant volume, deviatoric stress, fabric anisotropyyrethanical coordination number. The last one has been
found to be the first variable to attain a critical value making possible foraseaf micro-and-macro-mechanical variables
the convergence to the critical state. In periodic shear cell tests, ferdarpr deformations samples with anisotropic particles
reach at the macro-mechanical level the same critical value for betlr §rce and void ratio. At the micro-mechanical level
the components of the stress tensor, the fabric tensor and the inertindétis® particles also « reach » the same stationary
state. By varying the aspect ratio of the particles we stated the strong cgloéparticle shape anisotropy on the parameters
that the granular packing « » at the critical state.
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1. INTRODUCTION issue [11], and depends on the consolidation history of
sand specimens [12]. «The question of uniqueness is es-
The stress-strain behavior of both dense and loossential in the investigation of granular materials at large
sand under shearing is first described by Casagrande shear deformations, as is observed in fault gouges [13].
1936 [1]. He concludes that sand for large shear defor« The limit state has been investigated using DEM sim-
mations independent of the initial density state reaches alation of biaxial test? ] and simple shear test [13]. An
limiting state (critical void radio) in which samples un- important step towards the development on the microme-
dergo unlimited deformation without further volumetric chanical continuum modeling of granular materials for
and stress increments. He also finds that the critical voidarge shear deformation is to determine how this state
ratio is only dependent on the confining pressure, andlepend on the initial conditions and the granulometric
thus determines the so-called critical state line relatingoroperties of the granular assemb®j»
the critical void ratioe; and the effective normal stress  In this work, we investigate « the critical state » by
o’ as applied on the shear box test. means of numerical simulations of polygonal packings
The existence and uniqueness of this critical state is af particles. The samples consist of isotropic and aniso-
major feature in soil mechanics since it is used to de+ropic particles in order to study the influence of particle
fine post-failure behavior of many constitutive models shape anisotropy on the global mechanical response of
describing granular materials [2, 3, 4, 5, 6, 7]. The « »granular media and its evolution to the critical state. We
critical state has been experimentally proven to be indeshow that the DEM simulations reproduce the main fea-
pendent of sample preparation and test conditions [8, 9fures of the critical state in soil mechanics, namely, the
Nevertheless, since there are some experimental difficulgranular media evolve toward a stationary state in which
ties to characterize the pre-and-post peak mechanical béie system reaches a constant void ratio and deforms with
havior of dense samples arising from the strain localiza-constant volume and deviatoric stress, and that for differ-
tion [3, 10]. There are some groups of researchers thagnt initial stress states the corresponding stationary val
claimed that the uniqueness of this state is still an opemies collapse onto a unique critical state line. The model



is described in detail in [14].

2. EXISTENCE AND UNIQUENESS

Coordination number

In order to assess the existence of the critical state, we
first explore the macro-mechanical evolution of granular
samples under biaxial compression. We characterize the

density state of the samples by the void ratio FIGURE 2. Evolution of (a) the deviatoric componeft; —

The macro-mechanical response of the granular mef2z and (b) the tracdy; + Fo; (coordination number) of the

dia is presented in Figures 1(a) and 1(b). The evolutiorfkaNb/rr']f tﬁfgggfpgﬁjg;ngﬁjf':S(')rglfla“on parametpgsy- 64

of sing = (01 — 02)/(01 + 02) with axial straing; for

the dense and the loose samples is presented in Figure

_1(a). « De_nse samples_exh|b|t a peak and strain s_oftqu presented. One can notice that the contact network
ing behavior, whereas in loose samples no peak is 0bétarts from a rather initial isotropic configuratiém —
served » . However, both systems at large shear defor,:22 ~ 0, and that as soon as the shear process begins
mations present a tendency to stabilize around a valu i

. “anisotropy is developed. This anisotropy is a result of the
that_on/e could consider as the steady state of the materiglaation and reorientation of contacts and force chains
(dsing/dt = 0).

Th luti f th id ratio with axial inis il along the direction of loading. For the dense samples, the
€ evo ut[on of the void ratio with axia s.tr.a.m IS 1i- anisotropy increases until the granular system develops
lustrated in Figure 1(b). The dense samples initially con

: its peak strength i.e. the maximum anisotropy coincides
tract and later dilates. The loose samples contract. F%ith the maximum strength{ 5 % axial straing;). On

large axial strgin va!ugs the void ratio reaches a constanfq other hand, the anisotropy in loose samples simply in-
value. The void ratio in both dense and loose sampleE’

: o . reases until it saturates at a constant value between the
varies until it achieves a constant value between 0.23 an

0.26. This stati lue ais slightly diff i atistical fluctuations. In the strain-softening regirne t
0. ThiS slationary vaiue @S sligntly ditierent for anisotropy of dense samples decreases until it converges
each sample, since the parameterand ¢ at this sta-

i d q h | : ; o the same value that the loose samples have reached.
tionary state depend on the granulometric properties o ereafter, the media deforms at a critical anisotropy. This

the material [15, .16]' _In this stage of large deformations,has been previously observed in numerical simulations of
the granular medium is deformed at constant volume ang)iaxial tests with the DEM [19, 20, 21]

with the same approximate value of deviator stress. This
state corresponds to the critical state of the material an
it is independent of the initial sample density [2].
Another issue we address is the evolution of the
anisotropy of the contact network of the granular pack-
ing [17, 18]. « This » is characterized using the de-
viatoric component of the fabric tensér which takes
into account the orientational distribution of contact-nor
mal vectorsii. In Figure 2 a the evolution of the devi-
atoric componenEy; — F; of the fabric tensor witte;

The creation and destruction of contacts can be stud-
fjed by following the coordination numbet. The trace

of the fabric tensoF gives the coordination number. «

In Figure 2b we present the evolution of the coordination
number of the samples ». At low axial strain values, the
dense system contracts and as a consequence a small in-
crement ofZ is observed. This is followed by a decrease

()

Critical state line
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FIGURE 3. Critical state line in (a) the compression plane
void ratio e - mean stresg, (b) the stress plang - p’, and

(c) the deviatoric fabric 1 — F»p) - mean stresg’ plane.
FIGURE 1. Evolution of (a) the deviator stress and (b) void System parameterd| = 900 particles angt = 0.5. In (a) the

ratio of the samples used to asses the existence of the criticalquares indicate the initial state of the samples. The circles are
state. Simulation parameterg = 64 kN/m,N = 900 particles  the values that samples reach at the stationary state, and the
andpu = 0.5. Samples correspond to different seed for sampleerror bars correspond to 1 standard deviation of the analyzed
generation. data.




of the Z value when the system start to dilate. This de- Contrary to samples with isotropic particles, the sam-
crease is associated with the the breaking of interlockingples with anisotropic particles do not converge to the crit-
between particles and the related formation and collapsesal state under biaxial compression. This is explained
of force chains along the direction of loading. As a re-in micro-mechanical terms as follows: whereas the
sult, each particle begins to lose contacts. Both samplesotropic samples reach a critical value of anisotropy and
around 8% axial strain reach a similar coordination num-coordination number, the contact network of anisotropic
ber Z close to 3.6. This critical coordination number is samples is still changing. The non-stationary state of
the first signal that the granular packing is evolving to-these variables is directly related to the evolution of the
wards the critical state, and at the same time it enableparticle orientation. Elongated particles are reoriented
the contact network to reach an steady structure. during the shear process without converging to a steady
We also perform biaxial experiments using differ- state. This micro-mechanical evidence, concerning the
ent initial confining pressuregy in order to assess the non-stationary state of the fabric and particle orientatio
uniqueness of the critical state, i.e., that there is a wniqudoes not allow the systems to reach the critical state [14].
void ratio for each state of effective stress at the critical
state. Since our model does not take the crushing of par-
ticles into account, we retain low stress levels. 3. INFLUENCE OF ANISOTROPIC
In Figure 3a, we plot in the compression plane (void PARTICLE SHAPE
ratio e - mean stresgp’ (p' = (01 + 02)/2)) the initial
states of the samples (blue squares) and the values @ this section, we study the existence of the critical state
void ratio that the loose and dense samples attain at larg@r samples consisting of anisotropic particles by means
deformation (red circles). One can see that the same limigf shear cell experiments. For this experiment, periodic
state is reached for all the samples defining a uniqugoyundary conditions are imposed in horizontal direction.
steady state line. This line can be fitted by a function ofthe top and bottom have fixed boundary conditions.
the form, The top and bottom layers of the particles are moved
e(€ref,n) = &t eXH—N (P'/Plef)), (1)  in opposite d_irectionfs So as to_impoge a constant shear
. . rate y. Two different initial configurations are obtained
where eer and pi; are the void ratio and the mean for the anisotropic samples, (i) the grains are oriented
stress at the critical state corresponding to the referencgarajiel to the shear direction (called "horizontal” sagnpl
initial confining pressure Roret = 16kN/m», andnisa  _ ) (i) the grains are oriented perpendicular to the shear
constant. The same collapse of the stresses at the criticg|yection (called "vertical" sample - V).
state (red circles) onto a steady state line is observed e find in our simulations that both the ratio of shear
in Fig. 3b, in which the stress plaig— p/, beingq = force to normal forces/F, and the void ratice evolve
(01— 02), is depicted. The stress ratigp’ atthe critical  oward the same saturation value independently of the
state defines the strength parametir which for our  jnjtial anisotropy due to contact and particle orientagion
simulations is related to the critical state friction angle Anisotropic samples also reach the critical state.

@sas, q At the micro-mechanical level the deviatoric compo-
M= ? =2SsiN@ks. (2) nent of the fabric tensd¥ and inertia tensdralso reach a
cs stationary value independently of the initial particle-ori

The range of variation of the critical friction angle found entation. The stationary value of the deviatoric compo-
in our simulations, i.e. 22< @s <27, is smaller than  pent js directly related to the steady state at the macro-
the limits usually obtained for sand and gravel in threemechanical level, and seems to be a micro-mechanical
dimensional experiments in realistic soils°26 36" [9, requirement for the global steady state.
16]. This is explained in terms of the higher coordination Although the results discussed herein and presented
number of systems in 3D [22], specifically, the higher iy [14] correspond to dense samples and one value of
the coordination number the higher the strength of theconfining pressure, they are valid for different initial
material as presented in Figures 1a and 2c. density states and stress levels. These results validate
The previous simulation results support the idea ofin our MD simulations the existence of the so-called

uniqueness of the critical state [2, 3], in which a crit- critical state in soil mechanics irrespective of any iitia
ical/steady state line links the critical states descgbin congition and particle shape characteristics.

combinations of effective stresses and void ratig: . Furthermore, we consider dense samples with elon-
_Finally, we also evaluate the critical anisotropy for gated particles initially oriented in the vertical direxti
different stress sates, and we find that a critical statgnd with the aspect ratios= 1.0, 1.5, 2.3, 3.0 and 4.0.

line for anisotropy can also be defined. Although noThe confining pressurpy is kept constant at 16 kN/m,
presented, the relation between structural anisotropy angng the shear rate= 1.4 s1,

mean stresg’ is best fitted by a linear function.
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/ . fabric tensorF and (b) inertia tensor for isotropic particles
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the particles. FoA > 2.3 theZ value saturates and
remains constant (Fig. 4c).

- The larger the anisotropy of particle shapethe
larger the fabric anisotropy at the critical state
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! R ! ! P ! - The larger the anisotropy of particle shapethe
larger the anisotropy related to particle orientation
FIGURE 4. Effect of particle shape on the critical state val- at the critical state (Fig. 4e).

ues attained by the granular packings on shear cell tests, (a)

ratio shear - normal fordes/F,, (b) Void ratio, (c) coordination * The larger the anisotropy of particle shapethe

numberZ, (d) deviatoric fabridyy — Fxx, (€) deviatoric inertia smaller th_e accumulated mean particle rotation an-
lyy— Ixx and, (f) mean accumulated rotati¢®) of the particles gle (©) (Fig. 4f).
since the beginning of the simulation till a shear straia 30. - The larger the anisotropy of particle shapgthe

The following aspect ratid are used: 1.0, 1.5, 2.3, 3.0 and
4.0. The shear ratg= 1.4 s 1. The error bars correspond to 1
standard deviation of the analyzed data.

longer the time to reach micro-mechanical equilib-
rium in fabric and particle orientation (Fig. 5).

The above statements concerning the influence of
anisotropic particle shape on the macro-mechanical be-
In Figure 4 we present the average values of the macrbavior of granular packings at the critical state, specifi-
and micro-mechanical parameters for the different aspeatally, larger mobilized shear strength and more sensitiv-
ratio at the critical state. We consider the ratio betweerity to volumetric changes (dilatancy) with the increment
the shear and normal fordg/F,, the void ratioe, the  of the aspectratid, are explained in terms of the bigger
coordination numbeZ, the deviatoric compone,, — interlocking among particles and the strong frustration
F«w of the fabric tensor, the deviatoric component of rotation that such particles undergo during shearing.
lyy— Ixx Of the inertia tensok, and the mean accumulated Particle rotation is further hindered by the larger coor-
rotation of the particleg®). The data correspond to dination number that anisotropic particles develop due
the average of the variables once the critical state ha® the larger relative flat surface. The last contribution
been reached. The standard deviation is also presente the macro-mechanical observations is the larger struc-
The evolution of the deviatoric componefig — Fand  tural anisotropy (fabric) attained by the anisotropic sys-
lyy — Ixx with shear strairy is also shown in Fig. 5. From tems at the critical state.
Figures 4 and 5 we conclude the following:

- The larger the anisotropy of particle shapgethe
larger the strength of the material at the critical state
(Fig. 4a).

4. CONCLUDING REMARKS

. . « The steady state that granular materials reach under
- The larger the anisotropy of particle shage |arger shear deformations have been assessed for differ-
the larger the void ratio at the cr|t_|cal state a.nd’ent initial conditions using isotropic and anisotropic-par
therefore, the larger the volumetric deformation icjes The existence and uniqueness of the critical state
(Fig. 4b). is verified for isotropic shaped particles using biaxiat tes
« For A < 2.3 the larger the anisotropy of particle simulations. Contrary of that, samples with anisotropic
shapeA, the larger the coordination numb&rof  particles do not reach the critical state under biaxial



test, but they do reach this state in the periodic sheas$.

test. » Furthermore, the samples deform at constant void _ o )
10. J. Desrues, “Experimental characterization of failure,

ratio, shear stress, fabric anisotropy, particle oriéomat

and mechanical coordination number. The last one has
been found to be the first variable to attain a critical ;;
value making possible for the rest of micro-and-macro-
mechanical variables the convergence to the critical statei 2.
The uniqueness of the critical state is validated in our
simulations, when it is found that the critical states re-13:
lated to different stress states collapse onto only one crit

ical state line.

state independently of the initial orientation of the parti

cles. This is related to the removal and reorientation of _ _
15. I. Herle, and G. Gudehu®)echanics of Cohesive-

the initial inherent anisotropy (fabric and particle orien

tations) in the direction of the induced shear. It is found
that a steady value of fabric anisotropy and particle ori-
entation is a micro-mechanical requirement for the exis47,

tence of the critical state.

Finally, by varying the aspect ratid of the particles
we can state the important effect of particle anisotropy
on the macro and micro-mechanical response of granular
media. « The evolution of the contact network, which ;¢
is characterized by bucking of force chains and stress
drops events, show a strong dependency on the particte0.
anisotropy, which is still under investigation. Another
important question to expore in the near future is whether
the critical state depends on the loading history of the

material.»
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