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The quasi-static mechanical response of granular materials under cyclic loading is studied in this paper using
a discrete polydisperse model of disks. The response of the system is characterized by a linear accumulation
of plastic deformation with the number of cycles. At the grain level, a quasi-periodic ratchet-like behavior is
observed at the contacts. The study of this slow dynamics allows to explore the role of friction in the permanent
deformation of unbound granular materials supporting streets and roads.

1 INTRODUCTION

Traditional pavement design methods are still almost
completely empirical. Long term experience with
the performance of on-service roads is supplemented
with the results obtained from especially constructed
test pavements. Changes in loading and environmen-
tal conditions can therefore be hardly considered or
treated as parameters, limiting the scope of the in-
formation obtained. These disadvantages of the tradi-
tional methods have become more obvious during the
last decades as a consequence of the grow of trans-
portation needs. The increase of traffic loads have re-
sulted in a rapid deterioration of the public road sys-
tem and therefore in a rise of the maintenance ex-
penses. This has attracted the attention of public au-
thorities that is urging the road construction industry
to optimize the designs. The use of recycled materi-
als and by-products as alternatives to the natural ag-
gregates used in pavement structures is also claimed
nowadays. All these urges and needs have forced the
development of new methods that can be more versa-
tile and comprehensive.

Mechanistic and analytical design procedures have
been developed based on the analysis of the response
of the structure under specific loads and environ-
mental conditions. Understanding the behavior of the
components of the structure is of course a prereg-
uisite of this approach. In this respect, elastoplastic
behavior of unbound granular materials (basic com-
ponent of roads and pavement) has been one of the
main of pavement engineering for many years (1; 2),
since they are principal responsible of the rutting and
cracking of the pavement. Unbound granular materi-
als exhibit two types of deformation when subjected

to cyclic loading: resilient deformation which could
lead to fatigue cracking of the overlaying bound, and
permanent deformation. Note that although the per-
manent deformation occurred in one cycle is only a
small fraction of the overall deformation in the pave-
ment, the gradual accumulation of these plastic defor-
mations could lead to an eventual failure of the mate-
rial due to excessive rutting. Whether a given system
will experience progressive accumulation of perma-
nent deformation, or whether the increase of perma-
nent deformation will stop is crucial for the perfor-
mance prediction. Most of the research carried out
over the years concentrated on the resilient behav-
ior, maybe due to the practical difficulties in studying
permanent deformation. The use of simple models of
the material permits the numerical resolution of the
dynamics, which will be of great importance in the
understanding of the granular components of pave-
ments. In particular, a detailed study of the micro-
mechanics of the permanent strain in the system is
then possible.

The response of unbound soil under cyclic load-
ing has been investigated introducing the shakedown
theory (2; 3; 4). This theory predicts that a pavement
is liable to show progressive accumulation of plas-
tic strains under repeated loading if the magnitude
of the applied loads exceeds a limiting value called
the shakedown limit. The pavement is then said to ex-
hibit an incremental collapse. On the other hand, if the
loads are under this limit, the growth of plastic defor-
mations will eventually level off and the pavement is
said to have attained a state of shakedown by means
of adaptation to the applied loads. More in detail, the
shakedown concept maintains that there are four cat-



egories of material response under repeated loading:

e An dastic range for low enough loading levels,
in which no permanent strains occurs.

e elastic shakedown, where the applied stress is
slightly under the plastic shakedown limit. The
material is plastic for a finite number cycles.
However the ultimate response is elastic.

e plastic shakedown, where the applied stress is
slightly less than that required to produce rapid
incremental collapse. The material achieves a
long-term steady state response with no accumu-
lation of plastic strain and hysteresis.

e Incremental collapse or ratcheting, where the
applied repeated stress is relatively large. Plastic
strains accumulate rapidly with failure occurring
in the relatively short term.

Shakedown theory is essentially an extension of the
classical theory of elastoplasticity. This theory the
cyclic loading response by postulating the existence
of an elastic region in the stress space (5). This elastic
region is a pragmatic compromise which helps to give
a dependence of response on the recent history of the
deformation, but is not a necessary feature. Element
tests show indeed that the onset of the plastic defor-
mation is gradual and not sharply defined. The bound-
ing surface model have been proposed in order to pro-
vide a more appropriate description (6). This theory
has not found widespread in the geotechnical appli-
cation, due to its complex mathematical structure and
the great number of parameters in it, that are difficult
to calibrate (7).

Ten years ago, the hypoplastic model was formu-
lated in order to mend the deficiencies of the elasto-
plastic theory (8; 9). The term hypoplastic refers to
the fact that any load involves plastic deformations.
Without any recourse to an elastic regime, the hy-
poplastic models established the incremental stress-
strain relation with the Cauchy stress tensor and void-
ratio as internal variables. Latter versions of the hy-
poplastic equations provide a correct description of
the historical dependence of the mechanical response,
introducing additional internal variables such as the
back stress tensor (9) or the inter-granular strain (10).
These model have been skeptically received by the en-
gineering community, due to scarce physical meaning
of these internal variables.

Most of the theoretical work trying to identify the
internal variables of the constitutive equations are
based on macro-mechanical observations of the res-
ponse of soils samples in conventional apparatus.
A micro-mechanical observation of the phenomena,

would help to get an Insignt into these internal varl-
ables. Indeed, the mechanical response of the gra-
nular soils is no more than a combined response of
many micro-mechanical arrangements, such as inter-
particle slips, breakage of grains and wearing of the
contacts.

In the last years, grain scale investigation of cyclic
loading behavior of granular materials has become
possible using discrete element methods, in which the
evolution of the individual grain is obtained by the
calculation of the interaction between the particles.
The quasi-static coulomb friction on lasting contacts
has been extensively studied by means of algorithms
of molecular dynamic (MD) (11) and contact dynamic
(CD) (12). In the MD method an elastic regime is
introduce in each contact, and the evolution of the
grains is solved explicitly by the numerical solution
of the motion equations. In the CD approach the parti-
cles are supposed infinitely hard, and the equilibrium
equations are solved by using an implicit algorithm
(13). The grain are usually represented by spheres
or disks. More realistic geometries, that have already
been used (14; 15), are limited by the high computa-
tional time that those simulations require.

Recent micro-mechanical investigation of granular
materials point out the singular disorder of these me-
dia. Experiments and simulations show strong fluc-
tuations in contact forces (16) and their long range
correlation through chain forces. It will be shown in
this paper that a ratcheting behavior can be found in a
simple 2D disk model, as a direct consequence of this
particular disorder of the contact network. A periodic
irreversible motion at the sliding contacts is observed
when a cyclic loading is applied. The existence of
ratcheting motion in the sliding contact will be shown.
These ratchets in the sliding contacts produce long
time regimes with a constant rate of accumulation of
permanent deformation.

The model used is described in Sec. 2, where the
inter-particle interactions are also detailed. The dy-
namics of the system is solved by means of a MD
algorithm. The evaluation of the stress-strain relation
during cyclic loading and the accumulation of per-
manent deformation is presented in Sec. 3. A grain
scale investigation of the cyclic loading response is
performed in Sec.4 by the evaluation of the distribu-
tion of the contact forces. The connection between
the micro-mechanical observation and the macro-
mechanical response is also discussed. Finally, the
concluding remarks and future perspectives of this
work are presented in Sec. 5

2 MODEL

MD algorithms have been used to simulate granu-
lar materials via polygonal particles (17; 18; 19). A
scheme will be considered in this paper, being the



grains modelea by aisks. With this further 1dealiza-
tion, we try to identify the influence of the geometry
of the grains on some interesting responses of the sys-
tem (19; 15). Being the algorithm faster for spheres
that for polygons, we expect to reach longer ranges
of the cyclic loading process. A suitable contact force
must be introduced in order to include the quasi-static
frictional force and the sliding condition.

Figure 1: Packing of the disks. The system is closed
by four walls that are initially subjected to a certain
fixed pressure. The cyclic loading is imposed through
the walls at the top and the bottom, while the other
two walls push with a steady stress.

Disks, representing the particles, are so generated
that the diversity of their areas follows a Gaussian dis-
tribution with mean value ¢2 and variance of 0.36¢2.

2.1 Contact forces.

In order to calculate the forces, we assume that all the
disks have a characteristic thickness L. The force be-
tween two disks is written as F' = f L and the mass of
the disks is M - L. In any real contact, there is defor-
mation in the impact region. In the calculation of the
contact, the disks are supposed to be rigid, but they are
allowed to overlap so that the force can be calculated
by means of this virtual overlap.

The contact force can be broken down in j?c =
fe+ f*, where f¢and f? are the elastic and viscous
contribution. The elastic part of the contact force also
splits in two components, fe = fenc + fetc. Where
n¢ = (7, — ) /|7 — 7| and £¢ is perpendicular to 7°.
It is worth it to discuss these components carefully.

2.1.1 Normal elastic forces.

The normal elastic force is defined f¢ = —k,J, where
k, is the normal stiffness and § is the overlapping
length. Given two particles ¢ and j with diameter d;
and d;, respectively, their overlapping length is de-
fined as

1
5=§(di+dj)—(ﬁ—@)'ﬁ, (1)

In terms of the position vector r; of particle z and
the unit vector 7i¢ that points from i to .

2.1.2 Friction forces.

In order to model the quasi-static friction force, the
elastic tangential force is calculated using an exten-
sion of the method proposed by Cundall-Strack (14):
An elastic force ff = k;Ax, proportional to the elas-
tic displacement is included at each contact. &; is the
tangential stiffness. The elastic displacement Az, is
calculated as the time integral of the tangential ve-
locity of the contact during the time that the elastic
condition | f;| < uf,, is satisfied. Here 4 is the friction
coefficient. The sliding condition is imposed keeping
this force constant when | f;| = uf,. The straightfor-
ward calculation of this elastic displacement is given
by the time integral starting at the beginning of the
contact

t
Axp = [u®)eusi—IfNd, @

where O is the Heaviside step function and v de-
notes the tangential component of the relative velocity
v° at the contact. ¥¢ depends on the linear velocity o;
and angular velocity ; of the particles in contact ac-
cording to

W:m—ﬁj—&ix—*

2.1.3 Damping forces.

A rapid relaxation during the preparation of the sam-
ple and a reduction of the acoustic waves produced
during the loading is obtained if damping forces are

included. These forces are calculated as f” = muvi®.
Here m is the relative mass of the disks in contact and
v is the coefficient of viscosity. These forces introduce
time dependence effects during the cyclic loading.
Nevertheless, it will be shown in Sect 4 that these ef-
fect can be arbitrarily reduced by increasing the time
of loading, so that we can assume the quasi-static ap-
proximation to be valid.

2.2 Sample preparation.

The way in which the sample is prepared for the ex-
periment, has a strong influence on the mechanical
response of the granular material. In our case, the
disks are first placed randomly into a rectangular box
such that they do not overlap with each other. The
interaction of the disks with the walls of the box is
implemented applying a normal visco-elastic force
¥ = —k,0 —mu,v¢ at each disk lodged in any of the
walls. Here ¢ is the penetration length of the disk on
the wall. A gravitational field § = ¢+ is also switched



on, where 7' IS the vector connecting the center of mass
of the assembly with the center of the disk. The ac-
tivation of this gravity field produces homogeneous,
isotropic distribution of disks.

After a certain time ¢, (which is defined below) a
change in the gravity modulus is imposed such as g =
9o+ 1/2(g5 — go)(1 + cos(1007t/ty)) until the time
2t in order to bring the porosity down. Samples with
packing fraction around 0.819 + 0.001 are obtained
after relaxation with this method if g; = 100g0 (g0
will be defined next).

The external load is imposed by applying a force
oW and o,H on the horizontal and vertical walls,
respectively. W and H are correspondingly the width
and the height of the sample. When the velocity of
the disks vanishes, the gravity is switched off. A fifth-
order predictor-corrector algorithm is used to solve
the equations of motion.

It can be shown by dimensional analysis that the
strain response depends only on a minimum set of di-
mensionless parameters: 1) the ratio ¢,/t;, between
the period of cyclic loading ¢, and the characteris-

tic period of oscillation ¢, = \/k,/p¢? (where k, is
the normal stiffness of the contacts and p the density
of the grains). 2) The ratio ¢, /ts between the relax-
ation time ¢, = 1 /v and the oscillation time. 3) the ra-
tio k,/k,, between the stiffnesses. 4) the adimensional
stress state o/k,, and 5) the friction coefficient p =
0.1. In our simulation we take ¢, = 1000%,, ¢, = 100t,,
k, = 0.33k,, go = 6.25 x 1078k, and the initial pres-
sure py = 6 x 107%k,,. Finally, t, = 2.5 x 10~°s and
k, = 160M Pa.

3 PERMANENT DEFORMATION

In the simulation of the cyclic loading response we
use a procedure equivalent to the element laboratory
biaxial test. Initially, the sample is isotropically com-
pressed until the pressure p, is reached. Then, the
stress o, = py is kept constant, while the vertical one

is changed in time o, = py + %Aa[l + cos(mt/to)].

3.1 Stress-strain calculation.

In terms of the strain components e, = 51" and ¢, =
A the shear strain v = ¢, — ¢, has been obtained

in the simulations. The volume fraction is also calcu-
lated as & = V,,/V}, where V, is the sum of the areas
of the disks, and Vj, the total volume of the system.
Part (a) of Figure 2 shows the relation between the
shear stress ¢ = (0, — 0,)/2 and the shear strain -y
in the case of a loading amplitude Ao = 0.2p,. This
relation consists of open hysteresis loops which nar-
rows as consecutive load-unload cycles are applied.
This process produces an accumulation of permanent
strain with the number of cycles which is represented
by v in part (c) of Figure 2. We observe that the
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Figure 2: (a)Up left: Shear stress versus shear strain
in the first 40 cycles. (b) Up right: permanent (plastic)
strain yy after IV cycles versus the number of cycles.
(c)Bottom: stress against the volume fraction in the
longer range.

strain response consists of a short time regime, with
rapid accumulation of plastic strain, and a ratcheting
regime, with a constant accumulation rate of plastic
strain of around 2.3 x 10~ per cycle. In longer simu-
lation a sequence of different ratcheting regimes, sep-
arated by short plastic deformations, can be observed
(15).

Part (b) of Figure 2 shows the relation between the
shear stress and the volume fraction. This consists of
asymmetric compaction-dilation cycles which makes
the sample to compact during the cyclic loading. We
observe a slow variation of the fraction during the
ratcheting regime. The evolution of the volume ra-
tio seems to be rather sensitive to the initial random
structure of the disks. Even so, we found that after
1.8 x 10? cycles the volume fraction still slowly in-
creasing linearly the sample, without any evidence of
a saturation level.

3.2 Applicability of the shakedown theory.

It might be expected that for amplitudes of the load-
ing cycles small enough, the elastic regime postulated
in the shakedown theory could be reached (7). In an
attempt to detect the existence of this elastic regime,
we decreased the amplitude of the load cycles and e-
valuated the corresponding asymptotic response. In
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Figure 3: Cumulative permanent strain versus perma-
nent strain rate. Crosses correspond to Ao = 0.01,
stars Ao = 0.1, boxes Ao = 0.2, solid boxes Ao =
0.3 and circles Ao = 0.4.

Figure 3, the change of the strain rate with the cu-
mulative strain is plotted. Coincidently with the ex-
perimental results in (4), we found a transition from
a plastic shakedown regime to a incremental collapse.
The plastic shakedown occurs for very low stresses:
the system first reacts to the loading with a transient
plastic deformation, becoming resilient after that. If
very high stress are applied the system shows an in-
cremental plastic deformation with each loading cy-
cle. This behavior in a pavement would result in its
failure by shear deformation. Between these regimes,
the system shows an intermediate response. In this in-
termediate region, the plastic shakedown shown in Fi-
gure 3 turns to a linear growth of the strain for longer
time. This latter behavior can be clearly observed in
part (c) of 2, but was not included in Figure 3.

3.3 Quasi-static limit.

Concerning to role of the inertial effect in this ratch-
eting regime, the same test has been applied on
five identical samples, imposing different loading fre-
quencies in each one of test. The result, shown in Fi-
gure 4, is that as the frequency is reduced, the ratch-
eting effect gets progressively smaller until a quasi-
static regime is reached. In this regime a reduction of
one half of the frequency does not affect the strain
response in more of 5%. From Figure 4, it can be con-
cluded that damping or inertial effects do not affect
the apparition of ratcheting in the sample.

4 MICRO-MECHANICAL INVESTIGATION

The existence of these ratcheting regimes with con-
stant accumulation of plastic deformation per cycle
suggests a certain periodic behavior in the sliding
contacts. This behavior is apparently in contradiction
with the strong temporal fluctuations that has been ob-
served in granular materials (20). We have noticed,
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Figure 4: Variation of the plastic deformation per cy-
cle with the duration of the cyclic loading ¢,.

however, a the persistence of the probability distribu-
tion of forces trough the cyclic loading that can ex-
plain this particular behavior.
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Figure 5: Distribution function of the normal forces
in the contacts, measured in four different times of
the simulation: N4 = 10, Ng = 105,N- = 150 and
Np = 190. Note that the mean radius ¢ used in the
scaling of the force, has been previously defined. In
this simulation Ao = 0.1. The equation of the best fit
curve is: 0.843z%43 exp —0.54621639,

4.1 Fluctuations on the force.

Despite the uniformity of the granular materials, the
distribution of forces within the materials seems to be
very heterogeneous. The stress applied on the bound-
ary is transmitted through chains where the contact
forces are particularly strong (16). In Figure 5 the
distribution function of normal forces at four differ-
ent snapshots of the simulation is shown. The best-fit
curve is also included for an easier comparison. Note
that although all distributions were measured in dif-
ferent times of the simulation, they correspond to the



same stage of the cyclic loading. It is clearly observed
that the shape of the distribution of forces at this point
remains approximately constant throughout the whole
simulation. This has also been checked following the
time evolution of the first and the second moment of
the distribution.

4.2 Field of displacements.

Figure 6 shows a snapshot of one of our simulations.
The displacements of the particles previous to the
snapshot are shown in arbitrary units. Two opposite
flows of particles can be observed as a consequence of
the cyclic stress. These particular shearing of the par-
ticles is responsible of the observed strain growth in
the direction. Interesting is to note also the formation
a vortex structure. This phenomenon rise the ques-
tion of which the relation strain/structure-formation
is. This a matter however that escapes the scope of
this paper.

Figure 6: Snapshot of the simulation of a system
with Ag = 0.1. This image correspond to the instant
N=130, in which the system is already in a ratcheting
regime. The lines represent the previous displacement
of the particles.

4.3 Sliding contacts.

One of the most important features of the force net-
work is the high number of sliding contacts. Although
most of the contacts satisfy the elastic condition | f;| <
wfn, the strong heterogeneities of the force network
produce a considerable amount of contacts reaching
the sliding condition |f;| = pf,, during the compres-
sion. Those sliding contacts carry most of the irre-
versible deformation of the granular assembly during
the cyclic loading. Opening and closure of contacts

are quite rare events, and the coordination number of
the packing keeps approximately its initial value in all
the simulations.

Let us next discuss the correlation between the dy-
namics of the sliding contacts and the evolution of the
stiffness of the material. The last one is given by the
slope of the stress strain curve in part (a) of Figure 2.
The evolution of the fraction n, = N, /N, of sliding
contacts with the number of loading cycles is shown
in Figure 7. Here N is the number of sliding contacts
and N, is the total number of contacts. each loading
phase, the number of sliding contacts increases, giv-
ing rise to a continuous decrease of the stiffness as
shown in part (a) of Figure 2. An abrupt reduction of
the number of sliding contacts is observed at the tran-
sition load-to-unload, producing a discontinuity in the
stiffness and hence, a plastic deformation. Some con-
tacts reach this almost periodical sliding state even for
extremely small loading cycles. The ratchet-like be-
havior of these contacts produces a net displacement
of the hysteretic stress-strain loop in each cycle, rul-
ing out an elastic regime.
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Figure 7: Ratio of sliding contacts n; in the ratchet-
ing for different values of Ao /py: 0.1 (solid line), 0.2
(dotted line), 0.3 (dashed line), 0.4 (dotted top line).

5 CONCLUDING REMARKS

A grain scale investigation of the cyclic loading res-
ponse of a packing of disks has been presented. We
have shown the existence of long time regimes with a
constant accumulation of plastic deformation per cy-
cle, due to ratcheting motion at the sliding contacts.
This phenomenon may have deep implications in the
study of the permanent deformation of soils subjected
to cyclic loading. More precisely, it may be necessary
to introduce internal variables in the constitutive rela-
tions, connecting the dynamics of the sliding contacts
with the evolution of the continuous variables during
cyclic loading.



The coinciaence of results with the elastoplastic be-
havior reported in polygonal packing, indicates that
these phenomena do not depend on the geometry of
the grains, and that they are inherent to the granular
interactions. It is still open the question of the ex-
istence of ratcheting in three dimensional systems.
Contact Dynamics seems to be the most appropriate
method for the simulation of these systems, since MD
becomes very expensive from the computational point
of view. If similar responses of the system were found
via CD simulation, it could be also confirmed that
ratcheting in these systems is not a consequence of
the MD method for the resolution of the dynamics of
the system.
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