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Abstract

We use a two-dimensional model of polygonal particles to investigate granular
ratcheting. Ratcheting is a long-term response of granular materials under cyclic
loading, where the same amount of permanent deformation is accumulated after
each cycle. We report on ratcheting for low frequencies and extremely small load-
ing amplitudes. The evolution of the subnetwork of sliding contacts allows us to
understand the micromechanics of ratcheting. We show that the contact network
evolves almost periodically under cyclic loading as the subnetwork of the sliding
contacts reaches different stages of anisotropy in each cycle. Sliding contacts lead
to a monotonic accumulation of permanent deformation per cycle in each particle.
The distribution of these deformations appears to be correlated in form of vortices
inside the granular assembly.

Key words: Granular systems, Dynamics and kinematics of rigid bodies,
Molecular dynamics methods
PACS: 45.70.-n, 45.40.-f, 47.11.Mn

1 Introduction

The existence of granular ratcheting as a long-time behavior in granular ma-
terials is still under discussion in the scientific and engineering community.
This behavior refers to the constant accumulation of permanent deformation
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per cycle, when the granular sample is subjected to loading-unloading stress
cycles with amplitudes well bellow the yield limit [1]. Ratcheting regimes are
observed in both numerical [2–6] and physical [7,8] experiments. There is no
controversy about the existence of ratcheting when the stress amplitudes reach
the yield criterion. However, it is not clear whether this effect persists for
loading amplitudes well inside the yield surface, or whether there is a certain
regime where no accumulation of deformation occurs. Numerical simulations
have suggested that ratcheting may persist for loading amplitudes bellow the
yield limit [2,6]. Here we investigate the microscopic origin of this effect, and
how it affects the global deformation of the sample. We present numerical ev-
idence of granular ratcheting for small loading amplitudes in the quasistatic
regime.

This paper is organized as follows: In the Section 1.1 we introduce the concept
of ratcheting, which has been used in recent year in many different contexts. In
Section 1.2 we introduce two different types of constitutive models (hypoplas-
tic and elastoplastic models ) for modeling cyclic loading. In Section 1.3 we
summarize recent micromechanical observations showing deviations from the
classical soil mechanics and supporting the existence of the granular ratchet-
ing regime. In Section 2 we study the long-time, quasistatic strain response
of a dense polygonal packing under cyclic loading. A micromechanical investi-
gation of granular ratcheting in terms of induced anisotropy and deformation
patterns is presented in Section 3.

1.1 What is Ratcheting?

Chapter 46 of the Feynman Lectures on Physics [9] contains a celebrated
illustration of ratcheting device. As shown in Fig. 1, the ratchet consist of
a pawl that engages the sloping teeth of a wheel, permitting motion in one
direction only. In Feynman’s ratchet, an axle connects this wheel with some
vanes, which are surrounded by a gas. The vanes are randomly hit by the gas
molecules, but due to the presence of the pawl, only collisions in one direction
can make the wheel lift the pawl and advance it to the next notch.

The possibility to extract work from noise using such ratchet devices has
attracted interest from many researchers [10–12]. Brownian motors, quantum
ratchets or molecular pumps, all these machines operates under a similar ratch-
eting mechanism: The chaotic Brownian motion of the microworld cannot be
avoided, but one can take advantage of it [12]. There is an extensive body of
work on this subject, driven by the need to understand the molecular motors
that are responsible for many biological motions, such as cellular transport
[13] or muscle contraction [14]. Recently, this kind of mechanism has been
experimentally demonstrated using the technology available to build microm-
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Fig. 1. Microscopic ratchet device introduced by Feynmann [9]. A wheel that can
only turn one way is connected to a vane by an axle. The vane is inside a box with
gas molecules in thermal equilibrium. Molecules randomly hit the vane. The sloping
teeth of the wheel rectify the motion. The whole device converts random motion in
work that can be used to lift a fly.

eter scale structures. Many man-made ratchet devices have been constructed,
and they are used as mechanical and electrical rectifiers [12]. Apart from these
fascinating machines, the ratchet effect is used to describe economical or so-
ciological processes where the intrinsic asymmetry in the system allows rec-
tification of an unbiased input [15]. In geological materials, ratcheting is a
major cause of deterioration when the material is subjected to cyclic loading,
thermal or mechanical fluctuations [8,16,17]. An asymmetry in a foundation
can produce tilting and eventual collapse of an engineering structure due to
ratcheting [18]. The tower of Pisa [19] is a well documented structure, where
the tilt has been observed from its construction in 1174. Railway design is an-
other important example. Granular materials are used as a supportive railbed.
The excitations caused by trains induces permanent deformation in the gran-
ular bed [20]. Therefore a better understanding of the ratcheting response will
reduce the maintenance cost of many engineering structures.

1.2 Constitutive modeling

The modeling of the cyclic loading behavior of soils has been a central issue
in the development of advanced constitutive equations. The 1960s have seen
many significant developments in this field. Prior to this, soil mechanics was
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confined to linear elastic theory and the Mohr-Coulomb failure criterion. An
important advance in the scope of soil plasticity occurred after the pioneer-
ing work of Roscoe and his coworkers in Cambridge, which led to the basic
principles of the Critical State Theory [21,22]. In an attempt to cover further
aspects of cyclic soil behavior, subsequent developments have given rise to a
great number of constitutive models [23].

One important result of the theory of plasticity is the so-called shakedown the-

ory [24–27]. This theory predicts that a granular material accumulates plastic
strains under cyclic loading if the magnitude of the applied load exceeds a
threshold value called the shakedown limit. The material is then said to ex-
hibit incremental collapse or ratcheting. If the loads are below this threshold,
the accumulation of permanent deformation stops after a certain number of
cycles. However, this basic assumption is difficult to verify by experiments on
cyclic loading, because the onset of the ratcheting with the increase of the
loading amplitude is gradual and not sharply defined [28]. This has motivated
the development of the bounding surface model, where the elastic regime is
shrunk to the current stress point [29].

The other approach to model soil behavior is the black box approach, in which
the constitutive relation is derived by exploiting mathematical symmetries and
representation theorems [30,31]. The main advantage of this approach is that
it offers a rigorous mathematical framework for the development of the tensor
structure of constitutive relationships. Taking this perspective, some cyclic
loading models have been developed starting from the theory of hypoplastic-
ity [30]. This theory involves non-linear rate terms in order to capture the
typical loading-unloading behavior of plastic deformation. Besides the stress
and the void ratio, hypoplastic models introduce additional internal variables
such as the back stress tensor [32] or the intergranular strain [33]. In order
to give a physical basis to these internal variables, the concept of granular
temperature has been introduced as a measure for velocity fluctuations of the
grains [1,34,35]. However, the range of validity of statistical mechanics used
in these approaches is still not fully resolved.

1.3 Micromechanical modeling

Most of the attempts to identify the internal variables of constitutive equations
are based on macromechanical observations of the response of soil samples in
conventional apparatus. A micromechanical investigation would help to se-
lect the physically motivated internal variables and to get insight into the
principles and mechanics determining their evolution. After all, the mechan-
ical response of granular soils is no more than a combined response of many
micromechanical arrangements, such as interparticle slips, breakage of grains
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and wearing of the contacts. The development of micromechanical constitutive
models is specially motivated by recent experiments on granular materials at
grain scale [36]. Using photoelastic disks, these experiments show that stress
in granular materials is transmitted through an heterogeneous contact net-
work which reflects a broad contact force distribution. This broadness leads in
turn to a considerable number of sliding contacts. These contacts are defined
by the condition |ft| = µfn, where fn and ft are the normal and tangential
contact force and µ the coefficient of friction. Under small deviatoric loads,
an initially isotropic packing develops an anisotropic contact network because
new contacts are created along the loading direction, while some contacts are
lost perpendicular to it [36–38]. Anisotropy is also observed in the subnetwork
of sliding contacts, because some contacts leave the sliding condition under
slight deviatoric loading [39]. Geometrical anisotropy leads to an anisotropic
response of the granular assembly. The effect of the anisotropy of the contact
network on the elastoplastic response has been recently investigated by the
introduction of fabric tensors, measuring the orientational distribution of the
contacts [39].

The investigation of granular soils using particle-based simulations often in-
volves oversimplified particle geometries and contacts laws which are far from
the properties of real soils. Nevertheless, these models are useful for identifying
the role of induced anisotropy and the emergence of force chains in the elasto-
plastic response of these materials [40,41]. Despite their simplicity, particle-
based models reproduce the complex structure of the incremental stress-strain
response of granular materials [42,40,43,44]. These findings support attempts
to base the construction of macroscopic constitutive relations on particle-based
models. The particle models should capture realistic granulometric properties
and interparticles interactions, and the constitutive models will describe the
response of these particle models using incremental (or rate type) relations.
The incremental relation can then be used in the Finite Element Codes for
large scale simulations.

The method of calculating the incremental response of particle-based models
is the same as used soil mechanics [46,47]. This method has been implemented
to calculate the incremental response of packings of disks [42] and polygons
[45,39]. The incremental response in three-dimensional deformations has also
been investigated using packings of spheres [43,44]. However, most of these cal-
culations are still confined to plane strain deformation. In this case the stress
space is completely described by the volumetric (p) and deviatoric (q) com-
ponents of the stress. The incremental strain defines the strain space, whose
components are the volumetric (de) and deviatoric (dγ) strain.The noncoax-
iality angle, measuring the orientation of the principal direction of the strain
with respect to the principal direction of the stress, is required for anisotropic
materials [39]. The incremental response is given by a function between the
incremental stress space and the incremental strain space.
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Fig. 2. Stress - strain relation resulting from the load - unload tests using a packing
of polygons [45]. The stress components are the pressure p = (σ1+σ2)/2 and the de-
viatoric stress q = (σ1−σ2)/2. σ1 and σ2 are the principal components of the stress.
The strain components are given by the volumetric de and the deviatoric dγ part of
the strain tensor. Grey solid lines are the paths in the stress and strain spaces. Grey
dash-dotted lines represent the yield direction (left) and the flow direction (right).
Dashed line shows the strain envelope response and the solid line is the plastic en-
velope response.The components of the initial stress state are σ1 = 1.25 × 10−3kn

and σ2 = 0.75 × 10−3kn. Here kn is the normal stiffness at the contacts.

Fig. 2 shows the typical incremental response resulting from a simulation us-
ing a perfect polygonal packing [45]. Starting from a point in the stress space,
the packing is loaded using a specific direction and a fixed loading amplitude
∆σ =

√
p2 + q2. The end of the load paths in the stress space maps into a strain

envelope response in the strain space. Then the sample is unloaded so that
the sample returns to its original stress state. The corresponding strain point
does not return to its initial state, so that the remaining strain corresponds
to the plastic incremental strain. This procedure is implemented by choosing
different stress directions with the same stress amplitude, so that the ends of
the strain paths create the plastic part of the envelope response. As shown
in Fig. 2, this envelope consists of a very thin ellipse, nearly a straight line,
which confirms the unidirectional aspect of the irreversible response predicted
by the elastoplasticity theory [48]. The yield direction φ can be found from
this response, as the direction in the stress space where the plastic response
is maximal. In this example, this is around φ = 87.2◦. The flow direction ψ
is given by the direction of the maximal plastic response in the strain space,
which is around 76.7◦. The fact that these directions do not agree reflects
a non-associated flow rule, that is also observed in experiments on realistic
soils [46]. From numerical simulations of packings of disks, Bardet concluded
also that a non-associated flow rule describes satisfactorily the incremental re-
sponse [42]. This conclusion is also supported by several experimental tests on
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plane strain deformation [48,52,22]. Both numerical and experimental results
show clearly deviations from the normality condition. A possible reason for
these deviations is that any load involves sliding contacts, so that the elastic
regime is vanishing small, not a finite domain as the Classical Elastoplasticity
assumes [40]. These results lead to the conclusion that a profound modification
of elastoplasticity theory is required [49].

Apart from the unidirectionality of the flow rule, simulations show that the
dilatancy d = −dep/dγp and the stress ratio η = q/p are related by the simple
linear relation d = c(η −M) (Fig. 3) [39]. This relation is not only supported
by experiments, but it also has been one of the fundamental issues in modeling
the stress-strain behavior of soils [50]. A physical explanation of this relation
is that the granular sample behaves like a strange fluid, that obeys this stress-
dilatancy relation as an internal kinematic constraint [51]. This constraint
becomes apparent near failure, where the plastic deformation dominates, and it
could be seen as the counterpart of the well-known incompressibility condition
of fluids. In this context, we should address the existing correlation between the
mean orientation of the sliding contacts and the plastic flow direction [39]. This
correlation suggests that this internal constraint can be micromechanically
interpreted from the induced anisotropy of the sub-network of sliding contacts.

In the limit of small deviatoric loads, the kinematic constraint is not longer
valid because elastic deformation dominates. However, the correlation between
the stress-dilatancy relationship and the induced anisotropy is still valid [39].
Under extremely small deviatoric loads, some contacts depart from the sliding
condition, leading in turn to an anisotropy in the subnetwork of the sliding
contacts. The effect of this anisotropy on the plastic response becomes evident
when we get the plastic envelope response of an isotropically compressed sam-
ple, see Fig. 3. Unexpectedly, the unidirectionality of the plastic deformations
breaks down, because small deviatoric loads lead to deviatoric plastic defor-
mations. This surprising effect contradicts the isotropic regimen postulated in
several constitutive models [52].

We will study here how this plastic deformation evolves when an isotropically
compressed sample is subjected to small cycles with deviatoric stress. We will
see that the deviatoric strain increases as the number of cycles increases. A
very surprising fact is that this accumulation does not stop for large number
of cycles, but it grows linearly with respect of the number of cycles. We call
his phenomena granular ratcheting.
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Fig. 3. Left:Dilatancy d = −dep/dγp versus the stress ratio η = q/p obtained from
the plastic incremental response of a polygonal packing [39]. The solid curve repre-
sents a linear fit; The dashed curve the relation given by the Nova & Wood model
[52]. Right: Plastic envelope response resulting from isotropically compressed polyg-
onal packing with a pressure p = 0.001kn. Here kn is the normal stiffness at the
contacts.

2 Granular ratcheting

We use a particle-based model with polygonal particles to investigate granu-
lar ratcheting. The polygons are generated by Voronoi tessellation [45]. This
method produces a range of areas of polygons following a Gaussian distri-
bution with mean value ℓ2 and variance of 0.36ℓ2. The number of edges of
the polygons is distributed between 4 and 8 for 98.7% of the polygons, with
a mean value of 6. The interparticle forces include elasticity, viscous damp-
ing and friction with a sliding condition. The ratio between the tangential
and normal contact stiffnesses is kt/kn = 0.33, and the friction coefficient is
µ = 0.25. The details of this particle model can be found elsewhere [2].

Simulations are performed using five different samples. Each sample consist
of 400 polygons, which are packed in the following way: First, the polygons
are placed randomly inside a rectangular frame consisting of four walls. Then,
a gravitational field is applied and the sample is allowed to consolidate. The
external load is imposed by applying a force σ1H and σ2W on the horizontal
and vertical walls, respectively. Here σ1 and σ2 are the vertical and horizontal
stresses. H and W are the height and the width of the sample. The polygonal
packing is isotropically compressed until the pressure p0 is reached. When the
velocity of the polygons vanishes gravity is switched off. Then, the vertical
stress σ1 = p0 is kept constant and horizontal stress is modulated as

σ2 = p0 + ∆σ[1 − cos(πt/t0)]/2, (1)
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Fig. 4. Stress-deformation relation in a polygonal packing subjected to cyclic load-
ing: (a) Deviatoric stress versus deviatoric strain in the first 40 cycles. (b) Permanent
(plastic) strain γN after N cycles versus the number of cycles. (c) Stress against the
volume fraction in the first 40 cycles. (d) Volume fraction ΦN after N cycles versus
number of cycles.(e) Stress against vorticity ∆ω. (f) vorticity after N cycles versus
number of cycles.

being ∆σ the loading amplitude and t0 the period of each cycle.

2.1 Stress-strain relation

The strain tensor is calculated as the symmetric part of Fij, where Fij is the
average of the gradient of the displacement field over a representative element
volume (RVE). This volume consists of the space occupied by all the particles
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whose distance from the center of the assembly is less than 10ℓ. The exact
expression of the averaged displacement field over the (RVE) can be found
in [40]. From the eigenvalues ǫ1 and ǫ2 of the symmetric part of the strain
tensor we obtain the deviatoric strain as γ = ǫ1 − ǫ2. The volume fraction
is calculated as Φ = (Vp − V0)/Vb, where Vp is the sum of the areas of the
polygons, V0 the sum of the overlapping areas between them, and Vb the area
of the rectangular box. The vorticity is calculated as the antisymmetric part
ω = (F12 − F21)/2 of Fij .

Part (a) of Fig. 4 shows the relation between the stress q = (σ1 − σ2)/2 and
the shear strain γ in the case of a loading amplitude ∆σ = 0.424p0. This
relation consists of open hysteresis loops which narrow as consecutive load-
unload cycles are applied. This hysteresis produces an accumulation of strain
with the number of cycles which is represented by γN in the part (d) of Fig 4.
We observe that γN consists of short time regimes, with rapid accumulation of
plastic strain, and long time ratcheting regimes, with a constant accumulation
rate of plastic strain of around 10−6 per cycle.

The relation between the stress and the volume fraction is shown in part (b)
of Fig. 4. This consists of asymmetric compaction-dilation cycles leading to
compaction during cyclic loading. This compaction is shown in part (e) of
Fig. 4. We observe a slow variation of the volume fraction during the ratch-

eting regime, and a rapid compaction during the the transition between two
ratcheting regimes. The slope of γN shows no dependency on the compaction
level of the sample. The evolution of the volume fraction seems to be rather
sensitive to the initial random structure of the polygons. Even so we found
that after 3 × 103 cycles the volume fraction still slowly increases in all the
samples, without reaching a saturation level.

Vortices contribute substantially to global deformation, as shown the Part
(c) of Fig. 4. We observe clockwise vorticity in the loading stage, followed
by counterclockwise vorticity in the unloading stage. Vorticity also changes
drastically during the transition between two ratcheting regimes, as shown
Part (f) of Fig. 4. The vorticity evolves slowly during ratcheting regimes;
and rapidly during the transition between two ratcheting regimes. A non-
monotonic behavior is observed in the time evolution of this vorticity field.
This behavior is not affected by the compactification level of the sample.

One would expect that for small enough loading amplitudes, one can reach
the elastic regime postulated in the shakedown theory [25]. In an attempt
to detect this elastic regime, we decreased the amplitude of the load cycles
and evaluated the corresponding asymptotic response of the deviatoric plastic
strain. During the first cycles a transient regime showing a decay of the perma-
nent deformation per cycle is observed. However, after some hundred cycles,
the sample reaches an asymptotic limit, where the plastic deformation in each
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cycle becomes constant. Regardless of the amplitude of the loading cycles, one
always obtains ratcheting behavior in the long time limit. This is shown in the
accumulation strain rate ∆γ/∆N for different loading amplitudes ∆σ in Fig.
5. A constant accumulation of strain is observed during cyclic loading, even
when the amplitude is as small as 10−3 times the applied pressure. Of course,
due the smallness of the ratcheting response for these loading amplitudes, one
can say that for small loading amplitudes the response is practically elastic.
Even if the slight repeated loading produced by transit of ants would produce
plastic deformation after some centuries, it is not possible to make them to
follow the same path all this time. However, it is important to note that Fig.
5 shows a smooth transition from the shakedown response to the ratcheting
response. This means that the transition from ratcheting to shakedown regime
is too smooth that it does not allow identification of a purely elastic regime.

In view of the extremely small strain levels accumulated during the cycling
loading, one would doubt that the simulations really capture the physical
origin of the phenomenon. In this respect, we should point out that the results
do not change nor when the time step is decreased neither when the floating
point precision is increased. Therefore we have no reason to believe that the
ratcheting comes from a cumulative systematic error of the numerical method.

Another important question is whether ratcheting is a genuine quasistatic
effect. Since the equations of motion include damping forces and inertia terms,
it is important to know their role in granular ratcheting. Damping and inertial
effects can be evaluated by performing the same test with different loading
frequencies. Fig. 6 shows that as the frequency is reduced, the ratcheting
tends to a constant value. From this result one can conclude that damping
or inertial effects do not affect the appearance of ratcheting in the sample, so
that this is a purely quasistatic effect.

3 Micromechanics of granular ratcheting

The existence of ratcheting for extremely small loading amplitudes appears to
be somewhat counter-intuitive. First, from the classical theory of elastoplas-
ticity one would expect a certain regime where only reversible deformation
is possible. Second, our discrete model does not incorporate wearing of the
grains. In practice, abrasion at the contacts leads to progressive rounding of
the grains, which explains the accumulation of plastic deformation under cyclic
loading [53]. Nevertheless, we will see that the dynamics of the contact network
can explain how ratcheting evolves in samples with constant granulometrical
properties.

Each contact is characterized by the variables shown in Fig. 7. The contact
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Fig. 5. Permanent deviatoric deformation per cycle versus loading amplitude in the
ratcheting regime. The calculations are performed on six different polygonal samples
[2].

force ~f is decomposed into its normal fn and tangential ft components with
respect to the contact surface. The angle ϕ is the orientation of the normal
force. The mobilized angle η = arctan(ft/fn) allows us to distinguish between
sliding and non sliding contacts. The sliding condition is given by tan(η) = ±µ,
where µ is the coefficient of friction.

3.1 Contact network

A striking feature of granular materials is the convoluted heterogeneous struc-
ture of the contact forces. As shown in Fig. 8, The stress applied on the
boundary of the assembly is transmitted through force chains along which
the contact forces are stronger than on average. Force chains lead to a wide
distribution of the contact forces in both the tangential and normal directions.

We first study the evolution of the distribution of the normal forces fn and
mobilized angle η during cyclic loading. A broadening of the distribution is
observed during each loading phase, followed by a narrowing of the distribution
during the unloading phase. When the ratcheting regime is reached, the time
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evolution of this distribution is characterized by a broadening phase followed
by a narrowing one in each cycle. In the ratcheting regime, this distribution
show a periodic broadening-narrowing regime.

To demonstrate this periodicity, the distribution of normal forces and mobi-
lized angles at different snapshots of the simulation is plotted in Figure 9. Note
that although all distributions were measured at different times of the simu-
lation, they correspond to the same stage of the cyclic loading. The shape of
the distribution at this point remains approximately constant throughout the
whole simulation. The contact force distribution evolves almost periodically
during the cyclic loading. We also observe a peak in the distribution of mobi-
lized angle at η = µ = 0.25. This peak suggests that an important number of
contacts reach periodically the sliding condition during the ratcheting regime.
An important issue in the granular ratcheting is the orientational distribution
of these sliding contacts, which is studied in the next section.
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3.2 Anisotropy of the sliding contacts

The anisotropy of the granular sample can be characterized by the orien-
tational distribution of the normal forces. For small deviatoric loads (i. e.
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∆σ < 0.5∆σmax, where ∆σmax is the peak value), anisotropy in the contact
network is almost absent, and the coordination number of the packing keeps
approximately its initial value N0 ≈ 4.4 in all the simulations.

The onset of anisotropy is different if one considers only the sliding contacts.
These contacts play an important role, because they carry most of the irre-
versible deformation of the granular assembly during the cyclic loading. This
anisotropy is described by the polar function Ωs(ϕ), where Ωs(ϕ)∆ϕ is the
number of sliding contacts per particle whose normal force is oriented between
ϕ and ϕ+ ∆ϕ.

Samples compressed with zero deviatoric load are characterized by an isotropic
distribution of sliding contacts. However, this isotropy is broken when the
sample is subjected to the slightest deviatoric load. This appearance of the
anisotropy can be schematically explained from Fig. 7. Let us assume that
the contact force satisfies the sliding condition ft = µfn. Imagine that a small
loading is imposed on the assembly in the vertical direction. If the normal
component of the force is parallel to the loading direction, this component
tends to increases more than the tangential force, so that the contact is likely to
leave the sliding condition. On the contrary, if the tangential force is parallel to
the loading direction it increases more than the normal force, and the contact
is likely to remain in the sliding condition.

This picture is useful for explaining the complex evolution of the orientational
distribution of the sliding contacts shown in Fig. 10. During the first cycle,
sliding contacts whose normal force is oriented nearly parallel to the load
direction leave the sliding condition during the loading phase, and some of
them slip during the unload phase. On the other hand, the sliding contacts
whose normal force is orientated nearly perpendicular to the load direction slip
during the loading phase, and leave the sliding condition during the unload
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Fig. 10. Distribution of the orientation ϕ of the contacts reaching the sliding con-
dition during the first two load-unload phases

phase. In the first approximation, the anisotropy can be given by

Ωs(ϕ) ≈











N0ns

2π
(1 − cos(2ϕ)) : loading phase,

N0ns

2π
(1 − sin(2ϕ)) : unloading phase,

(2)

0 1 2 3 4
0

0.2

0.4

N

n s

1035 1036 1037 1038 1039 1040

10
−3

10
−2

10
−1

N

n s

Fig. 11. Fraction of sliding contacts ns in the short (left) and long time (right)
behavior for different values of ∆σy/p0: 0.424 (dash-dotted line), 0.0707 (dashed
line), 0.00707 (dotted line) and 0.000707 (solid line)[2]
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where N0 ≈ 4.4 is the averaged number of coordination number and ns the
fraction of sliding contacts. This description uses a single fabric coefficient
ns, which is accurate for intermediate loading amplitudes. For small loads the
approximation is questionable due to the scarce number of sliding contacts.
For large loads, an significant number of contacts reach the sliding contacts
in both the load and unload phase, so that higher order fabric coefficients
are required [40]. However, ns can be consider as the most important internal
variable describing the cyclic loading response.

The time evolution of ns during cyclic loading is shown in Fig 11. The relevance
of this variable is demonstrated if one compares it with the evolution of the
stiffness of the material. The latter is given by the slope of the stress strain
curve in part (a) of Fig. 4. During each loading phase, the number of sliding
contacts increases, giving rise to a continuous decrease of the stiffness as shown
in part (a) of Fig. 4. The abrupt reduction in the number of sliding contacts
at the transition from load to unload is reflected by the typical discontinuity
in the stiffness observed under reversal loading. During cyclic loading the
number of sliding contacts tends to decrease, which produces a narrowing of
the hysteresis loops. In the long time behavior one can also see that some
contacts reach almost periodically the sliding state even for extremely small
loading cycles, leading to a constant amount of plastic deformation per cycle.
Note also that the number of contacts reaching the sliding conditions is almost
the same in both loading and unloading phase. This makes the hysteresis
loop almost symmetric, but slightly open to allow accumulation of plastic
deformation.

At the contact level, the constant plastic deformation per cycle is explained
from the variation of both force and displacement at the contacts. Parts (a)
and (c) of Fig. 12 show the trajectory of the normal and tangential components
of the force for two sliding contacts. After a certain number of loading cycles,
the contact forces reach a periodic regime, some of them reaching periodically
the sliding condition. The load-unload asymmetry of the contact force loop,
producing a slip at the contact of the same amount and in the same direction
during each loading cycle.

A measure for the plastic deformation of the sliding contact is given by
ξ = (∆xc

t − ∆xe
t )/ℓ, where ∆xc

t and ∆xe
t are the total and the elastic part

of the tangential displacement at the contact. Parts (b) and (d) of Fig. 12
show the plastic deformation ξ of the two sliding contacts. Due to the load-
unload asymmetry of the contact force loop, a net accumulation of plastic
deformation is observed in each cycle. In the case of the contact shown in part
(b) of Fig. 12, the contact slips forward during the loading, and backward
during the unloading phase. This sliding results in a net accumulation of per-
manent deformation per cycle. The other contact behaves elastically during
the loading and slips during the unloading. This mechanism resembles the
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Fig. 12. (a) and (b) Trajectories of the contact force of two selected sliding contacts.
The dots denote the times t = 0, 0.5t0, ..., 2t0, where t0 is the period of the cyclic
loading. The dashed line shows the sliding condition |ft| = µfn. (b) and (d) Plastic
deformation ξ at the contacts shown in (a) and (c).

ratchets devices presented in Sec.1.1. That is why this phenomenon is called
granular ratcheting.

3.3 Displacement field

During the ratcheting regime, there is a constant accumulation of plastic de-
formation per cycle at each one of the sliding contacts. An immediate con-
sequence of this fact is that each particle within the packing has a certain
displacement and accumulates the same rotation for each cycle. The typical
displacement of one particle during the cyclic loading is shown in Fig. 13.
During the ratcheting regime, the particle moves the same amount in each cy-
cle. This displacement remains constant during the long time of a ratcheting
regime, but it changes abruptly during the transition between two ratcheting
regimes. Typically, the maximal displacement per cycle at this transition is one
or two orders of magnitude larger than in the ratcheting regimes. Therefore
most of the deformation in the granular assembly occurs during the transi-
tions. Deformation during ratcheting is relative small, but is sufficient to drive
the system to unstable stages with relative large deformation.
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Fig. 13. Position of a single particle after each cycle. The detail shows the displace-
ment during the ratcheting regime.

It is interesting to observe the spatial correlation of such particle displace-
ments. The most interesting deformation patterns is the formation of vorticity
cells, see Fig. 14. Slow vorticity motion appears during the ratcheting regime,
and fast motion vortices appears during the transition between two ratcheting
regimes. This explains the evolution of the vorticity shown in part (c) of the
Fig. 4, as well as the abrupt changes of vorticity shown in part (f) of Fig. 4

Fig. 14. Displacement field during one loading cycle. The load amplitude is
∆σ = 0.6p0, and p0 = 0.001kn. The left image corresponds to the displacement
per cycle during the ratcheting regime; the right one is the displacement per cycle
during the transition between two ratcheting regimes. The arrows represent 105∆~u
in the left image and 103∆~u in the right one, where ∆~u is the displacement of the
particle per cycle.
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Vortex structures are created and destroyed during the transitions. Therefore
the vorticity patterns in each ratcheting regime is completely different from
the previous one.

Since the vorticity is linked with the a non-vanishing antisymmetric part of the
displacement gradient, the strain tensor is not sufficient to provide a complete
description of this convective motion during cyclic loading. Slip zones and
rotational bearings are other persistent deformation patterns during the cyclic
loading [2,6]. They appear periodically during each ratcheting regime. Patterns
are destroyed and new ones are created during the transition between two
ratcheting regimes. An appropriate constitutive model for ratcheting demands
additional degrees of freedom in the continuum, taking into account these
deformation patterns in strain-like variables.

4 Concluding remarks

A grain scale investigation of the cyclic loading response of a packing of poly-
gons has been presented. In the quasistatic limit, we have shown the existence
of long time regimes with a constant accumulation of plastic deformation per
cycle, due to ratchet-like motion at the sliding contacts. As the loading ampli-
tude decreases, a smooth transition from ratcheting to shakedown is observed,
which does not allow one to identify a purely elastic regime.

The overall response of the polygonal packing under cyclic loading consists of
a sequence of long time ratcheting regimes, with slow accumulation of plastic
deformation in terms of deviatoric strains, compaction and vorticity. These
regimes are separated by short time regimes with large plastic deformations.
The analysis of the displacement field per cycle of the particles shows that
cyclic loading induce convective motion inside the sample. These motion ap-
pears in form of vortex-like structures, which persist during the ratcheting
regime.

The existence of granular ratcheting may have deep implications in the study
of permanent deformation of geomaterials subject to cyclic loading. More pre-
cisely, the classical concept of an elastic regime needs to be abandoned, because
any load induces irreversible deformation. A continuum description of ratchet-
ing requires the introduction of additional degrees of freedom in the kinemat-
ics, as well as internal variables in the constitutive relations. These internal
variables must account for the dissipation produced by the sliding contacts in
the ratcheting regime, and the restructuring of the granular skeleton during
the transition between two ratcheting regimes. Recently two approaches has
been suggested to this issue: They extrapolate the statistical mechanics of
viscoelastic fluids [35] and thermally activated dislocations [34,54] to jammed
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granular materials. These approaches introduce two different temperatures as
internal variables, accounting frictional dissipation and energy released by un-
jammed transitions. The validity of these approaches remains conditioned to
the validation of the ergodic hypothesis for jammed granular media.

Geotechnical application of cyclic loading simulations is still limited by the
computer time needed for simulations. However, simulations of thousands of
cycles with small number of particles can be used to investigate the microscopic
origin of granular ratcheting, which will contribute to the development of large
scale simulation models. At this time, the similarity of results with the recently
reported ratcheting regime in packings of disks [6] and spheres [4] indicates
that this effect does not depend on the geometry of the grains, and that it
may be inherent to the particle interactions.

Modeling interactions between polygons still poses serious limitations, because
of the difficulty to derive conservative elastic forces: When forces between poly-
gons are calculated as a function of their overlapping area, the energy conser-
vation is not guaranteed [55]. An alternative approach is to define the potential
energy as a function of overlap, and derive from this potential contact forces
and torques [55]. However, this approach leads to unrealistic interactions, be-
cause the magnitudes of the torque applied to each particle are the same.
Moreover, the derivation of forces from this potential leads to complicated ex-
pressions which are difficult to code. A simpler approach has been proposed,
where a potential energy is associated to each vertex-edge interaction between
the polygons [56]. Mc Namara et al. show further difficulties when the classical
Cundall-Strack frictional force is used in simulations of packing of disks [57].
This force leads to path dependency in the potential energy, even when sliding
is hindered in the simulations. They also show that alternative methods for
calculating tangential forces in packing of disks removes granular ratcheting.
Thus, future modeling of cyclic loading needs to develop more realistic normal
and tangential contact force laws, and to understand the relation between the
contact model and the onset of permanent deformations.
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