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Sliding and rolling are two outstanding deformation modes in granular media. The first one induces fric-
tional dissipation whereas the latter one involves deformation with negligible resistance. Using numerical
simulations on two-dimensional shear cells, we investigate the effect of the grain rotation on the energy
dissipation and the strength of granular materials under quasistatic shear deformation. Rolling and sliding are
quantified in terms of the so-called Cosserat rotations. The observed spontaneous formation of vorticity cells
and clusters of rotating bearings may provide an explanation for the long standing heat flow paradox of
earthquake dynamics.
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I. INTRODUCTION

The micromechanics of heat production by friction in
granular materials has become an important issue in the
study of earthquake mechanics. One of the unresolved con-
troversies in this field is a phenomenon that geophysicists
call the heat-flow paradox �1�. According to common sense,
when two blocks grind against one another, there should be
friction, and that should produce heat. However, measure-
ments of heat flow during earthquakes are unable to detect
the amount of heat predicted by simple frictional models.
Calculations using the value of rock friction measured in the
laboratory, i.e., a typical friction coefficient between 0.6 and
0.9 �2�, lead to overestimation of the heat flux. As an ex-
ample one refers in this context to the heat flow observations
made around the San Andreas fault, which show that the
effective friction coefficient must be around 0.2 or even less
�3�. One possible scenario for the explanation of these obser-
vations is the mechanism of heat-induced pore-fluid pressure
increase �3–5�. Other mechanisms have been also discussed
�1,6,7�. At any rate, with or without pressurization, the cor-
rect assessment of frictional heat production during shear is a
central issue. Here we will address this issue by resorting to
the micromechanics of dry granular media representing the
gouge, i.e., the shear band consisting of fragmented rock
inside the fault zone.

The formation of rolling bearings inside the gouge has
been introduced as a possible explanation for a substantial
reduction of the effective friction coefficient �6�. This sim-

plified picture assumes that the gouge is filled with more of
less round grains which, as the plates move, can roll on each
other thus reducing the amount of frictional dissipation.
Granular dynamics simulations �1,8,9� and Couette experi-
ments �10� have demonstrated the spontaneous formation of
such bearings.

The overall effects of grain rotation are studied here using
granular dynamics simulations. We show that particle rota-
tion induces a phase separation in the granular media in
terms of three coexisting phases: �1� vorticity cells, �2� rota-
tional bearings, and �3� slip bands. The first two phases re-
duce significantly the frictional strength and the dissipation
with respect to the hypothetical case of simple shear. We
quantify these phases in terms of the so-called Cosserat ro-
tations. We address the necessity to introduce these variables
for the constitutive modeling of fault gouge. In Secs. II and
III we present the theoretical background and the particle-
based model. In Sec. IV the effect of particle rotation on the
strength and frictional dissipation is investigated. In Sec. V
we calculate the population of the three coexisting phases
using the homothetic-antithetic decomposition of the
Cosserat rotations.

II. COSSERAT CONTINUUM

In the framework of continuum mechanics, the math-
ematical description of granular rolling and sliding is a chal-
lenging task. We notice first that classical continuum theories
introduce the concept of the material point as a representa-
tive assembly of grains and ascribes to it only the degrees of
freedom of displacement, which in turn are correlated to the
displacements of the grains of the assembly. Thus classical*Electronic address: fernando@esscc.uq.edu.au
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continuum theory makes no provision for particle rotation.
More recent continuum models include the rotational degrees
of freedom by using the so-called Cosserat rotations �11–14�.
These are continuum field variables, measuring the relative
particle rotations with respect to the rotational part of the
displacement-gradient field. The name of these variables
gives tribute to the brothers Cosserat �1909� who were the
first to propose such a continuum theory. Fifty years after the
first publication of the original work, the basic kinematics
and static concepts of Cosserat continuum were reworked in
a milestone paper by Günther �15�. Günther’s paper marks
the rebirth of micromechanics in the 1960s. Following this
publication, several hundreds of papers were published on
the subject of micromechanics of granular media �16�. The
growing interest in the Cosserat theories in recent years fol-
lowed the link that was made by Mühlhaus and Vardoulakis
�14� between the Cosserat continuum and the onset of shear-
bands in granular materials. Observations of particle rota-
tions from particle-based and continuum-based computer
models �17� and physical experiments �18� show that inside
shear and interface bands the particles rotate differently as
their neighborhood. These findings demonstrated the neces-
sity to introduce the Cosserat rotations as additional field
variables in the shear-band evolution. These new variables
involved also a characteristic material length that allows in
turn to reproduce the characteristic width of shear bands.
This internal length has special significance from the com-
putational point of view, because its resolves the mesh-
dependency problems in the finite element simulations
�19,20�.

At any material point of the Cosserat continuum we as-
sign a velocity v� and a spin vector �� . Accordingly in plane-
strain deformation the kinematic fields are: the classical
strain-rate tensor, which corresponds to the symmetric part of
the average particle velocity,

Dij =
1

2
� �vi

�xj
+

�v j

�xi
� , �1�

and the Cosserat rotation, that is given by the difference
between the macrorotations and microrotations,

W =
1

2
� �ux

�y
−

�uy

�x
� − � . �2�

This variable can be calculated as the difference between the
rotation of the branch vector—defined as the line connecting
particle mass centers—and the rotation of the particle, aver-
aged over all pair contacts in the representative volume ele-
ment.

III. PARTICLE-BASED MODEL

We will investigate the discrete counterpart of the
Cosserat rotations by using granular dynamics simulations.
The discrete model consists of disks confined between two
horizontal plates. A normal force is applied on the plates, as
they are moved in opposite directions with a constant veloc-
ity. Periodic boundary conditions are imposed along the hori-
zontal direction, see Fig. 1. This geometry is a simplified

model of a gouge. Real rock gouge consists of nonspherical
particles. In the present model we are able to simulate two
extreme cases: The first one represents a young fault, which
is characterized by a strong interlocking of closely packed
rocks in the gouge. This case is simulated by hindering the
rotation of the disks. In the second case we allow the par-
ticles to rotate without rolling resistance. This is an idealiza-
tion of mature gouges, where the interlocking and the rock
asperities are reduced due to grain fragmentation.

The discrete model is a two-dimensional �2D� implemen-
tation of the lattice solid model �1,21,22�. This is a suitable
platform to investigate the dynamics of fault gouge via
granular dynamics simulations. Two disks of radii Ri and Rj
interact when the distance between their centers of mass rij is
less that the sum of their radii. Their interaction is given by
the viscoelastic contact force

f�c = kn�xnn� + kt�xtt� + �0m��nvn
cn� + �tvt

ct�� . �3�

The first two terms are elastic forces, and the last two are
viscous forces. The unit normal vector n� points in the direc-
tion of the vector connecting the center of mass of the two
disks. The tangential vector t� is taken perpendicular to n� . The
elastic material constants are the normal kn and tangential kt
grain contact stiffnesses. The normal elastic deformation is
the overlapping length �xn=Ri+Rj −rij. The tangential elas-
tic deformation is chosen to be consistent with the Coulomb
sliding condition as follows: When two particles come into
contact we set �xt=0. Then, at each time t, we guess a new
value for the tangential elastic deformation as

�xt
pred�t� = �xt�t − dt� + vt

cdt , �4�

where vt
c is the tangential relative velocity at the contact,

vt
c = �iRi + � jRj + �v� i − v� j� · t�. �5�

Here v� i is the velocity and �i is the angular velocity of the
particles in contact. The predicted value of elastic deforma-
tion should be corrected to satisfy the Coulomb sliding con-
dition �f t

e � ��fn
e, where f t

e and fn
e are the tangential and nor-

mal component of the elastic force and � is the friction
coefficient. This condition equates to

v00
p

−v0 p
0

FIG. 1. �Color online� Contact network in the shear cell at criti-
cal state. The lines represent the branch vectors; the width of the
lines, the normal contact force.
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�xt�t� = sgn��xt
pred�t��min��kn�xn�t�

kt
, ��xt

pred�� . �6�

The viscous force in Eq. �3� assures the restitution between
colliding particles. �n and �t are coefficients of viscosity, and
the harmonic mean m= �1/mi+1/mj�−1 is the effective mass
of the disks. The normal and tangential components of the
relative velocity at the contacts are vn

c = �v� i−v� j� ·n� and vt
c

given by Eq. �5�. The factor �0=�xn /R0 is included in Eq.
�3�, to guarantee continuity of the viscous force during col-
lision. R0 is the averaged radius of the disks.

The roughness of the driving plates is modeled by attach-
ing particles to it. Their vertical displacement is controlled
with a simple elastic force fb=kn�, where � is the overlap-
ping length. The attached disks are not allowed to rotate and
their horizontal velocity is set to the velocity of the plates.

Each contact contributes to a direct force f�c and a torque

�c=Rif�
c · t� in the equation of motions. The model does not

include gravitational forces, but a viscous force f�i
v=�miv� i

and a torque �=�miRi
2�i is included for each particle. This

viscous forces allow relaxation of particles without contacts.
We use the Verlet method for solving the equations of motion
�23�.

The efficiency of the simulation is mainly determined by
the method of contact detection. Our method searches in
each step the contacts in a list of neighbors that is called a
Verlet list. This list is constructed by taking the pair particles
whose distance of their center of mass satisfies the constraint
rij �Ri+Rj +�. The Verlet list is updated when the maximal
displacement of the particles since the last update is larger
than � /2. The parameter � is chosen by making a compro-
mise between the storage �size of the Vertex list� and the
compute time �frequency of list updates�. A linked cell algo-
rithm is used to allow a rapid calculation of the new Verlet
list �24�.

The material constants of the model are the normal stiff-
ness kn=1; the tangential stiffness kt=0.1; the normal �n
=0.001 and tangential �n=0.0001 damping frequency and
the body viscosity �=0.0001. The density of the disks �=1;
and the friction coefficient whose default value is �=0.5.
The control parameters are the applied pressure p0=0.001,
and the velocity of the plates v0=10−6. The time step is �t
=0.05. The most relevant parameter of this model is the ratio
between the shear velocity v0 and the velocity of compres-
sional waves, which in our model is vp�R0

	kn /m. In our
simulation vp�1 so that vp /v0�106. This value should be
compared to the ratio in realistic fault zones, where vp
�1 km/s and v0�1 cm/year leading to a factor of vp /v0
�1010. To remedy this discrepancy of time scales we use the
quasistatic limit: The velocity is chosen low enough so that
the reduction of it by one-half affects the effective friction
coefficient by less than 5%.

IV. EFFECT OF PARTICLE ROTATION

Here we address the question of how particle rotation af-
fects the mechanical response of the shear cell. Simulation of
shear cells with rotating and nonrotating disks are compared

by calculating the power dissipation and the stress ratio at
the limit of large shear deformation. Each shear cell consists
of 1600 disks with random sizes between 0.5R0 and 1.5R0.
The length of the cells is 80R0. We start from a loose packing
that is compressed by applying a constant pressure at the top
plate. After a short collisional regime the sample reaches an
equilibrium configuration where the kinetic energy decreases
exponentially with time. After this stage the sample is
sheared by applying a horizontal velocity v0 at the top plate
and −v0 at the bottom. The simulations are performed by
taking microscopic friction coefficients between 0.0001 and
8. These values should be compared with the friction of re-
alistic materials, which ranges from 0.0001 for super-
lubricated surfaces to 1.2 for rubber-concrete contact sur-
faces.

All samples reach a limit state for large shear deforma-
tion. This state resembles the so-called critical state of soil
mechanics �25�. As shown in Fig. 2, the stress and the void
ratio reach a constant value besides some fluctuations. These
fluctuations result from the characteristic stick-slip dynamics
of the shear cell: In the stick phase, the elastic energy is
stored in force chains. These chains build up during the slow
relative motion of the plates. The elastic energy is released in
form of quakes. Each quake corresponds to the collapse of a
force chain which is reflected by an abrupt drop of the mac-
roscopic stress and a sudden compaction of the sample. The
collapse of force chains leads to reorganization of the par-
ticles and hence acoustic emission. This is detected from the
acceleration of a single particle in the sample, see part �d� of
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FIG. 2. Time profiles of �a� ratio between the normal and tan-
gential force acting on the plates, �b� void ratio, calculated as e
= �A−Ad� /Ad, where A is the area of the cell and Ad is the total area
occupied by disks, �c� frictional dissipation normalized by h0

=Lp0v0tc and �d� acceleration of one disk in the center of the cell,
normalized by a0=L / tc

2. The time is normalized by tc=L /v0.
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Fig. 2. Between two quakes the buckling of forces chains
leads to an overall elastoplastic response with constant in-
crease of void ratio.

A. Macroscopic coefficient of friction

The instantaneous strength of the shear cell in the critical
state can be quantified by an effective friction coefficient
�*=Ft /Fn. Here Fn and Ft are the normal and tangential
force acting on the top plate. Part �a� of Fig. 2 shows the time
evolution of �*. Typically this value increases in the interval
between two quakes, and it drops during the quakes, leading
to time fluctuations which are of the same order as the time
average value.

We define the macroscopic friction coefficient as the time
average of �* over the critical state,

�s = 
�*� =

Ft�
Fn

. �7�

The dependence of �s on the microscopic friction coefficient
for rotating and nonrotating disks is plotted in part �a� of Fig.
3. For small values of � the strength of the shear cells is not
affected by grain rotation. In both cases the effective friction
coefficient is larger than �. In the limit case �→0 the effec-
tive friction tends to 0.1. This shows that interparticle fric-
tion is not the only origin of the macroscopic frictional be-
havior of granular materials.

For large values of � particle rotation has a significant
effect on the strength of the shear cell. Particularly, in the
range 0.28���1.42 samples with rotating disks have a
macroscopic friction coefficient lower than the contact fric-
tion coefficient. On the other hand, the macroscopic friction
coefficient is larger than the contact friction coefficient for
nonrotating disks. In the limit �→	, the strength of both

samples tends to a constant value. This value is 0.34 for
rotating disks samples and 1.43 for nonrotating disks.

B. Energy dissipation

We now turn to the effect of grain rotation on dissipation.
Energy loss in the sample results from frictional and viscous
dissipation. Therefore the produced heat can be calculated as

h =� P�t�dt , �8�

where P is is the amount of work per unit of time done by
the dissipative forces. This can be decomposed as

P�t� = Pf�t� + Pv�t� , �9�

Pf and Pv being the frictional and viscous power dissipation.
The first quantity is calculated as the sum of the tangential
force times the sliding velocity of all the contacts,

P�t� = 
c

f t
e�vt

c −
d��xt

c�
dt

� , �10�

where f t
e is the tangential elastic contact force; vt

c the tangen-
tial relative velocity at the contact, and �xt

c the elastic part of
the tangential displacement as defined by Eq. �6�. The second
term in Eq. �8� is given by

Pv�t� = 
c

�0m��n�vn
c�2 + �t�vt

c�2� + 
p

�mi�vi
2 + Ri

2�i
2� ,

�11�

where the first sum goes over the viscous dissipation of all
contacts, and the second one over the dissipation of the vis-
cous body forces of all particles.

The heat versus time is plotted in part �c� of Fig. 2 for
rotating particles with �=0.5. The general trend of the heat
is to increase slowly between two quakes, and rapidly during
quakes. The contribution to heat during two quakes is almost
frictional dissipation, but at the quakes there is a non-
negligible contribution of viscous dissipation. The power dis-
sipation, which is given by the derivate of the heat, fluctuates
in time around a constant value. In the Appendix we show
that this value relates to the macroscopic friction coefficient
as


P�t�� = �sFnvt, �12�

where �s is the macroscopic friction coefficient defined in
Eq. �7�, Fn the normal force on the plates, and vt=2v0 the
relative shear velocity of the plates. Replacing Eq. �9� into
this equation, we decompose the macroscopic friction as

�s = � f + �v, �13�

where � f and �v are the contribution to dissipation by the
frictional and viscosity forces,

� f =

Pf�t��
Fnvt

, �v =

Pv�t��

Fnvt
. �14�

The dependency of the frictional and viscous power coeffi-
cients on � is shown in Fig. 4. For small values of � they are

FIG. 3. �Color online� Dependence of the effective friction co-
efficient ��s� on the microscopic friction coefficient for rotating and
nonrotating particles. Data of five different samples are superposed.
Solid lines represent the linear interpolation around the averaged
value. Dashed line corresponds to �s=�.
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not affected by particle rotation. On the other hand, when the
microscopic friction coefficient is rather large, rotation re-
duces the power frictional dissipation in almost one order of
magnitude. Frictional dissipation peaks at �=0.5 for rotating
particles and �=1.0 for nonrotating particles. Frictional dis-
sipation decreases as �→0 and �→	. In the first case be-
cause f t→0 and in the second case because the fraction of
sliding contacts is very small for large microscopic friction
coefficients.

As a result of stick-slip instabilities, there is a significant
amount of energy dissipation due to collisions. In the limit
�→0 viscosity is the dominant mechanism of strength and
energy dissipation. Viscous dissipation is also significant for
large values of �, due to the large stick-slip instabilities
which characterize this regime.

C. Displacement field

The origin of strength and frictional dissipation in the
shear cell should be associated to the deformation patterns
inside the cell. The simplest deformation picture is the so-
called simple shear. As shown in Fig. 5, this model corre-
sponds to the shear of a multilaminate with interlaminate
friction equal to �. Macroscopic friction coefficients larger
that the microscopic one can be explained by the addition of
interlocking between the layers. However, this picture does
not provide explanation to macroscopic friction coefficients
lower that the microscopic one.

In the context of heat flow paradox, it has been pointed
out that the picture of simple shear is not complete unless
one considers particle rotation �1�. It is believed that the
shear stress in the rocks of the gouge will reduce the shape
irregularities that hinder the rocks to rotate. Subsequent shear

will therefore induce particle rotations which reduces consid-
erably the frictional dissipation with respect to the expected
value of simple shear.

In order to verify this hypothesis, we compare the dis-
placement field of shear cell with rotating and nonrotating
disks. In part �a� of Fig. 6 we plot the displacement field for
nonrotating particles when �=0.5. We observe the formation
of blocks of particles moving approximately as a whole. The
boundaries between these blocks are not flat, but curved.
This produces strong interlocking, that explains the consid-
erable increase of the strength of the material with respect to
simple shear. Note that these blocks cannot slide against each
other for very long without changing shape. The reorganiza-
tion of these structures appears by means of large quakes.
These quakes change completely the displacement fields,
even when the position of the particles stays approximately
the same.

If the particles are allowed to rotate, vorticities appear
spontaneously. They are shown in part �b� of Fig 6. These
vorticities are accompanied by strong temporal fluctuations

FIG. 4. �Color online� Dependence of the viscous power coef-
ficient ��v� and frictional power coefficient �� f� on the microscopic
friction coefficient for rotating and nonrotating particles. Data of
five different samples are superposed. Lines represent the linear
interpolation around the averaged value.

∆U=v   t

nF

µt nF =     F

FIG. 5. �Color online� Simple shear model of gouge defor-
mation.

FIG. 6. Snapshot of the velocity field for �a� nonrotating and �b�
rotating grains. The friction coefficient is �=0.5.
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of the displacement field, but they can appear and disappear
intermittently in the same zone. The vorticity field has been
observed in many numerical simulations �26,27�. It re-
sembles to some extent the turbulent regime observed in flu-
ids, but their dynamics is quite different �28�: Fluids under
slow motion present a laminar regime where the mass dis-
placements can be considered as simple shear. On the other
hand, our shear cells develop large vorticities even in the
quasistatic regime, ruling out the simple shear deformation
regime. The short lifetime of these vorticities, typically the
same as the interval between two large quakes, contrasts to
the large lifetime of the eddies in turbulent flow. Thermal
measurements in dynamic shear banding on metals also re-
veals that homogeneous shear is not possible and vortices are
the rule �29�.

The spatial distribution of vorticity cells, when combined
with the distribution of rolling, provides a picture of the
bearings: Inside vorticity cells all particles rotate as a rigid
body, whereas the space between the vorticity cells is char-
acterized by intense relative rotations. This leads to clusters
of rotational bearings and zones of intense slippage. We will
quantify the contribution of these modes to global deforma-
tion by performing a kinematic decomposition of the contact
deformation. This decomposition will distinguish rolling
from sliding and from the rigid body motion of the vorticity
cells.

V. MEASURE OF ROLLING

Several definitions of rolling can be found in the literature
�30–32�. They are taken as measures of contact deformation
for each pair of interacting particles. Kuhn and Bagi decom-
pose the degrees or freedom of the two particles into rigid
body motion and objective motion �31�. Then the rolling is
defined as the average of the objective translation at each
side of the contact point �32�. Based on these studies, we
introduce a definition of rolling in terms of the rotation and
translation of the particles in contact. This definition will be
consistent with the fact that rolling allows deformation in the
assembly without frictional dissipation or accumulation of
elastic energy.

Let us suppose that at time t two particles indexed by i
and j are in contact, and they stay in contact during an in-
finitesimal time interval dt afterward. We introduce a system
of coordinates n� ij , t�ij , z�ij attached to the contact. The unit
normal vector n� ij connects the center of mass of the particle
i to that of the particle j,

n� ij =
x� j�t� − x�i�t�
�x� j�t� − x�i�t��

�
x� j�t� − x�i�t�

Ri + Rj
. �15�

The latter approximation is valid when �xn
d, where �xn is
the overlapping length and d the characteristic diameter of
the disks. The unit vector z�ij is perpendicular to the plane of
the disks, and the unit tangential vector satisfies t�ij =z�ij �n� ij.

Let us consider two points attached to each particle, in a
region infinitesimally near to the contact point. The tangen-
tial velocity of these points are given in terms of the linear v�k
and angular �k velocities of the particles,

vi,t
c = v� i · t� + �iRi, v j,t

c = v� j · t� − � jRj . �16�

Let us take the movement of the branch vector. That is,
the vector connecting the center of mass of the two particles.
The position of the point attached to the branch vector at the

contact is C� =x�i+Rin�
ij. We define rigid body velocity as the

tangential component of the velocity of this point. According
to Eq. �15�, this velocity is given by

Vrb
ij =

�v� iRj + v� jRi� · t�

Ri + Rj
. �17�

If the two particles move as a rigid body, the velocity coin-
cides with Eqs. �16�. Otherwise there is a relative velocity
between the two points attached to the particles. This veloc-
ity can be calculated by subtracting the rigid body like ve-
locity of Eq. �17� from the contact velocities of Eqs. �16�,

sij = vi,t
c − Vrb

ij , sji = v j,t
c − Vrb

ij . �18�

These velocities can be given in terms of linear and angular
velocities by using Eqs. �16� and �17�,

sij = �iRi −
Ri

Ri + Rj
�v� j − v� i� · t�ij ,

sji = − � jRj +
Rj

Ri + Rj
�v� j − v� i� · t�ij . �19�

They will be called objective velocities of the two particles at
the contact. These velocities are objective in the sense that
their magnitude is unaffected by the common rigid-body mo-
tion of the particle pair. In particular, these measures are not
affected by a change of the reference frame. The objective
velocities vanish if, and only if, the two particles move as a
rigid body. Otherwise the objective velocities involve rolling,
sliding or accumulation of shear strain at the contact.

We will relate these objective velocities to the aforemen-
tioned Cosserat-continuum rotations. At the micromechani-
cal level, the latter are defined as the relative rotation of the
particle with respect to the rotation of the branch vector
around the axis parallel to z�ij at the contact point �33�:

Wij = �i − �ij , Wji = � j − �ij , �20�

where �i is the angular velocity of the particle i with radius
Ri. �ij is the rotational velocity of the branch vector,

�ij =
�v� i − v� j� · t�ij

Ri + Rj
. �21�

Replacing Eq. �21� into Eqs. �20� and comparing the re-
sult with Eqs. �19�, we obtain a relation between the Cosserat
rotations and the objective velocities.

sij = RiW
ij, sji = − RjW

ji. �22�

These equations provide an interesting connection be-
tween the relative orientation of the Cosserat rotation and
rolling: When the Cosserat rotations are in a homothetic
couple as shown in part �a� of Fig. 7, the objective velocities
sij and sji have opposite signs. In this case, depending on
whether the contact is or not in the sliding condition, the
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contact deformation results either in frictional dissipation or
in accumulation of elastic energy, without rolling deforma-
tion. Homothetic couples appear in several cases: If the two
disks in contact rotate in the same sense without linear ve-
locity, the Cosserat rotations reads Wij =�i and Wji=� j. If the
particles do not rotate, the Cosserat rotations are given by
Wij =Wji=�ij. In both cases they are in a homothetic couple,
and hence there is no rolling deformation.

The appearance of rolling between the particles is linked
to the antithetic couple of the Cosserat rotations. This couple
is shown in part �b� of Fig. 7. In this case the rolling is given
by the common part of the objective velocities, i.e.,
min��sij� , �sji��. In particular, if the Cosserat rotations satisfy
WiRi+WjRj =0 both grains have the same objective velocity.
Therefore the contact deformation does not accumulate elas-
tic deformation or produce frictional dissipation, and hence
the deformation corresponds to pure rolling.

In the general case the objective velocities should be de-
composed into rolling and dislocation. The first one results in

Vroll
ij = �0 homothetic couple,

min��sij�, �sji��sgn�sij� antithetic couple,
�

�23�

and the dislocation is given by the difference of the objective
velocities,

Vdis
ij = sij − sji. �24�

Using the identity sij −sji=vi,t
c −v j,t

c , it is easy to prove that the
dislocation velocity corresponds to the relative tangential ve-
locity defined in Eq. �5�. In the limit of rigid disks, where
elastic deformation at the contact is absent, the dislocation
velocity coincides with the sliding velocity. In granular dy-
namics an elastic shear deformation is allowed, so that the
sliding velocity is given by

Vslid
ij = Vdisl

ij −
d��xt�

dt
, �25�

where �xt is the elastic part of the tangential displacement at
the contact, that is given by Eq. �6�. According to Eq. �9� the
sliding velocity times the tangential force corresponds to the
frictional dissipation. The second term of Eq. �25� involves
accumulation of elastic energy.

The Cosserat rotations turn out to be a suitable order pa-
rameter to describe the vorticities and bearings in the shear
deformation: As shown in Fig. 8, the spatial distribution of
these structures is not just random, but strong correlations
appear in form of three coexisting phases: �1� Vorticity cells,
where the particles rotate almost as a whole, so that the
Cosserat rotation is vanishingly small, �2� clusters of par-
ticles with intense rolling �rotational bearings�, where the
Cosserat rotations are antithetic, and �3� zones between par-
ticles with intense dislocation �microbands�, characterized by

FIG. 7. �Color online� Homothetic �a� and antithetic �b� couple
of the Cosserat rotations.

FIG. 8. �Color online� Snapshot of �a� vorticity field, �b� objective velocities at the contacts as shown in the inset of part �a�, and their
decomposition in �c� dislocation and �d� rolling. The sample consists of rotating grains with �=0.5.
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homothetic couples of the Cosserat rotations. Microbands in-
duce frictional dissipation and accumulation of elastic en-
ergy, whereas the rotational bearings accommodate the vor-
ticity cells to make them more compatible with the imposed
kinematic boundary conditions.

The microscopic friction coefficient can serve as a control
parameter of the relative population of these three phases.
This is shown in Fig. 9 for �a� nonrotating and �b� rotating
particles. In both cases the sliding displacement and rigid-
body velocities are the dominant deformation modes for
small values of �. In this regime, the dislocation velocity
coincides with the sliding velocity, because almost all the
contacts are in the sliding condition. Deformation in this case
is characterized by small clusters of particles moving against
each other through microbands of intense sliding. For rotat-
ing particles the rolling is much lower than the other defor-
mation modes, whereas the rolling is absent for nonrotating
grains.

For large friction coefficients the sliding velocity becomes
negligible, because few contacts are able to reach the sliding
condition. In this regime, depending on whether the particles

are or not allowed to rotate, the population of the deforma-
tion modes is quite different: for nonrotating particles, the
contact deformation is dominated by rigid-body motion and
elastic dislocation. The latter one builds up elastic energy
that is liberated in the form of strong quakes. The depen-
dence of dislocation and rigid-body motion on � is fairly
weak. This reflects a self-organization of the shear cells,
characterized by a nondependency of the effective friction
coefficient on �, already shown in Fig. 3.

For rotating grains and large friction coefficients rolling
plays a relevant role, as shown in part �b� of Fig. 9. The
deformation is dominated by rigid-body motion �due to the
vorticities�, rolling �due to the rotational bearings� and elastic
dislocation �due to building of force chains�. The self-
organization of the shear cells is given by the fact that rolling
and vorticities are not affected by a change in the micro-
scopic friction coefficient. The sliding turns out to be much
smaller that the other modes, because only few contacts can
reach the sliding condition. Therefore the dislocation results
almost completely in accumulation of elastic energy that is
released in the form of quakes.

The details of the dynamics of one quake is shown in Fig.
10. We use a friction coefficient of �=0.5. We observe a
small time interval �shock� characterized by a sudden de-
crease of the effective friction coefficient, along with an
abrupt compaction and a rapid frictional dissipation. This is
followed by a longer time interval �aftershock� given by an
exponential decay of microseismic activity with almost no
frictional dissipation. More details of the structure of the
quake are visible by calculating the time evolution of the
contact modes of deformation. Part �e� of Fig. 10 shows that
most of the contact deformation at the shock corresponds to
rolling and rigid-body deformation. In the aftershock the
sliding velocities become vanishing small, whereas the other
modes decay exponentially. Acoustic waves are generated at

FIG. 9. �Color online� Decomposition of kinematic roles for �a�
nonrotating and �b� rotating particles, as function of �. They are
calculated from the average of the absolute value of the rolling,
dislocation, sliding, and rigid-body velocities at the contacts. Data
of five different samples are superposed.

FIG. 10. �Color online� Time evolution of �a� stress, �b� void
ratio, �c� frictional dissipation, and �d� acoustic emission at the cen-
ter of the sample. �e� Average of the absolute value of rolling
�circles�, dislocation �asterisks�, sliding �crosses�, and rigid-body
velocities �diamonds�. The sample consists of rotating particles with
�=0.5.
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the point where the force chain fails. These waves travel
though the sample and they are reflected as they reach the
plates. After many reflections they become uncorrelated,
which removes almost all contacts from the sliding condi-
tion. Therefore sliding velocity modes are not active in the
aftershock, whereas the other modes decay exponentially in
the form of uncorrelated oscillations.

As far as earthquakes are concerned, it is remarkable that
only a minute part of the contact deformation during the
quake corresponds to sliding. This leads to an effective fric-
tion coefficient around 0.25 which is lower than the contact
friction coefficient of �=0.5, see Fig. 3. Therefore the intro-
duction of rolling in the gouge dynamics could potentially
explain the low friction of faults and low stress drops during
earthquakes.

VI. CONCLUDING REMARKS

The most important contribution of this work is to show
that spontaneous formation of vorticity cells assisted by ro-
tational bearings is the mechanism of reduction of strength
and frictional dissipation in shear cells. For the range of rock
friction of �=0.6–0.9, the effective friction coefficient in-
creases from �s=0.3 to �s=0.35, whereas the frictional
power coefficient decreases from � f =0.28 to � f =0.22.
These results are consistent with previous numerical simula-
tions �1� and heat flow observations in fault gouges �3�,
where the effective coefficient of friction is around one order
of magnitude lower than the contact friction coefficient. The
existence of such rotational patterns confirm earlier specula-
tions about the origin of this reduction of friction.

The strong dependence of macroscopic friction on rolling
raises the question about the extent of the frictional laws
derived from rock friction experiments. It is quite evident the
need of rotational degrees of freedom in the continuum de-
scription of fault gouge. As deduced from the deformation
field at the contacts, the Cosserat continuum approach should
be consistent with the observed three phase separation of
kinematic modes: �1� vorticity cells, where the Cosserat ro-
tations are absent; �2� bearings given by antithetic couple of
the Cosserat rotations, and therefore a pronounced rolling at
the contacts; and �3� microbands of homothetic couples, with
pronounced dislocations, and hence, strong accumulation of
elastic energy and high frictional dissipation. This descrip-
tion requires an extension of the existing Cosserat continuum
models, which consider only homothetic couples of the
Cosserat rotations �19,20�. As far as dissipation is concerned,
besides the Cauchy stress tensor, a couple stress tensor
should be introduced as an additional static variable of the
enhanced continuum, entering as the energetically dual coun-
terpart of the gradient of the homothetic part of the Cosserat
rotations �11,13,14,34�. In this context numerical simulations
can be used as a virtual laboratory to assist the development
of micromechanical constitutive models.

Concerning the heat flow paradox, we have shown that
the rotational modes lead to a reduction of frictional dissipa-
tion of the same order as the fault gouge observations. How-
ever, our gouge model remains too simple and additional
elements should be incorporated: pore fluid, particle shape

and grain fragmentation. An important step forward will be
the study of the contribution of grain fragmentation in the
energy budget. Observations of fault zones suggest that
earthquakes can pulverize rocks in the gouge �7�. This leads
to a fractal grain size distribution and an increase of the
gouge surface area. Therefore some additional issues con-
cerning the heat flow paradox should be considered: Does
fracture energy play an important role in the earthquake en-
ergy balance? Do such fractal gouges develop vortical struc-
tures and rotating bearings?

There are also some aspects about the aseismicity of fault
zones which deserve detailed study in future work. Vortical
structures and rotating bearings promote a coherent deforma-
tion which remains during two quakes. These may inhibit the
large events we observe in samples with nonrotating grains.
The dynamics of these rotational patterns will be significant
in understanding the enigmatic aseismic creep, where two
tectonic plates move against each other without accumulat-
ing elastic energy or generating earthquakes �35,36�.
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APPENDIX: RELATIONSHIP BETWEEN MACROSCOPIC
FRICTION AND POWER DISSIPATION

In this section we use the energy balance to determine the
connection between the average of power dissipation and the
macroscopic friction coefficient of the shear cell in the criti-
cal state. The principle of energy conservation states that the
change of internal energy is given by the work done by the
external force minus the energy loss by the dissipative
forces,

dE�t�
dt

= Fnvn�t� + Ft�t�vt − P�t� , �A1�

where E is the elastic potential energy stored at the contacts
plus the total kinetic energy of the disks; Fn the constant
normal force applied on the plates; vn�t� is the relative ver-
tical velocity between the plates; Ft�t� the tangential force
applied on the plates; vt=2v0 the constant relative tangential
velocity between the plates; and P�t� the work per unit of
time done by the frictional forces.

Let us take the time average of Eq. �A1� along the critical
state,
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� dE�t�
dt

� = Fn
vn�t�� + 
Ft�t��vt − 
P�t�� . �A2�

In the critical state, both potential and kinetic energy of the
cell fluctuate around a constant value. This implies that

� dE�t�
dt

� � 0. �A3�

Since void ratio fluctuates around a constant value in the
critical state, the time averaged value of the normal compo-

nent of the relative velocity between the plates vanishes


vn�t�� � 0. �A4�

This, together with Eq. �A3� and the energy balance �A2�
gives the connection between the friction coefficient �7� and
the frictional power coefficient,


P�t�� = �sFnvt. �A5�

�1� P. Mora and D. Place, Geophys. Res. Lett. 26, 123 �1999�.
�2� J. Byerlee, Pure Appl. Geophys. 116, 615 �1978�.
�3� A. H. Lachenbruch and J. H. Sass, J. Geophys. Res. 97, 4995

�1992�.
�4� J. Sulem, I. Vardoulakis, H. Ouffroukh, M. Boulon, and J.

Hans, Geosci. J. 336, 455 �2004�.
�5� J. Rice, J. Geophys. Res. 111, B05311 �2006�.
�6� R. Mahmoodi Baran, H. J. Herrmann, and N. Rivier, Phys.

Rev. Lett. 92, 044301 �2004�.
�7� B. Wilson, T. Dewers, Z. Reches, and J. Brune, Nature �Lon-

don� 434, 749 �2005�.
�8� A. Zervos, I. Vardoulakis, M. Jean, and P. Lerat, Mech.

Cohesive-Frict. Mater. 5, 305 �2000�.
�9� J. A. Astrom, H. J. Herrmann, and J. Timonen, Phys. Rev. Lett.

84, 638 �2000�.
�10� C. T. Veje, D. W. Howell, and R. P. Behringer, Phys. Rev. E

59, 739 �1999�.
�11� W. Ehlers, E. Ramm, S. Diebels, and G. A. D’Addetta, Int. J.

Solids Struct. 40, 6681 �2003�.
�12� I. Vardoulakis and J. Sulem, Bifurcation Analysis in Geome-

chanics �Blakie Academic and Professional, London, 1995�,
Chap. 8, pp. 281–283.

�13� F. Froiio and I. Vardoulakis, Powders & Grains 2005
�Balkema, Leiden, 2005�, pp. 135–139.

�14� H.-B. Mühlhaus and I. Vardoulakis, Geotechnique 37, 271
�1987�.

�15� W. Guenther, Abhandlungen der Braunscheigschen Wissen-
schaftlichen Gesellschaft �Boltze, Goettingen, 1958�, Vol. 10,
pp. 195–213.

�16� M. Satake, in IUTAM Symposium on the Mechanics of Gener-
alized Continua, edited by F. Kroener�Springer-Verlag, Berlin,
1968�, pp. 455–466.

�17� P. Papanastasiou and I. Vardoulakis, Int. J. Numer. Analyt.
Meth. Geomech. 13, 183 �1989�.

�18� P. Lerat, Ph.D. thesis, ENPC, Champs-sur-Marne, France,
1996.

�19� P. Papanastasiou and I. Vardoulakis, Int. J. Numer. Analyt.
Meth. Geomech. 16, 389 �1992�.

�20� J. Techman and E. Bauer, Comput. Geotech. 19, 221 �1996�.
�21� P. Mora and D. Place, PAGEOPH 143, 61 �1994�.
�22� S. Latham, S. Abe, and P. Mora, Powders & Grains 2005

�Balkema, Leiden, 2005�, pp. 213–217.
�23� M. P. Allen and D. J. Tildesley, Computer Simulation of Liq-

uids �Oxford University Press, Oxford, 1987�.
�24� T. Poeschel and T. Schwager, Computational Granular Dy-

namics �Springer, Berlin, 2004�, Chap. 2.4, pp. 61–65.
�25� D. M. Wood, Soil Behavior and Critical State Soil Mechanics

�Cambridge University Press, Cambridge, 1990�.
�26� H. S. A. Murakami, H. Sakagushi, and T. Hasegawa, Soils

Found. 37, 123 �1997�.
�27� M. R. Kuhn, Mech. Mater. 21, 407 �1999�.
�28� F. Radjai and S. Roux, Phys. Rev. Lett. 89, 064302 �2002�.
�29� P. R. Guduru, R. Ravichandran, and A. J. Rosakis, Phys. Rev.

E 64, 036128 �2001�.
�30� H. M. Shodja and E. G. Nezami, Int. J. Numer. Analyt. Meth.

Geomech. 27, 403 �2003�.
�31� M. R. Kuhn and K. Bagi, J. Eng. Mech. 130, 826 �2004�.
�32� K. Bagi and M. R. Kuhn, J. Appl. Mech. 71, 493 �2004�.
�33� I. Vardoulakis and J. Sulem, Bifurcation Analysis in Geome-

chanics �Blakie Academic and Professional, London, 1995�.
�34� A. Tordesillas, S. D. C. Walsh, and B. S. Gardiner, BIT 44,

539 �2004�.
�35� C. H. Scholz, Nature �London� 391, 37 �1998�.
�36� T. I. Melbourne and F. H. Weeb, Science 300, 1886 �2003�.

ALONSO-MARROQUÍN et al. PHYSICAL REVIEW E 74, 031306 �2006�

031306-10


