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The aim of this work is to study the strain localization and the fluctuations in shear bands using molecular
dynamics simulations. We show that: (1) The localization of frictional dissipation acts as a precursor mechanism
of failure; (2) Buckling of strain columns may explain the finite width of shear bands; (3) The building and
collapse of stress columns lead to stress and dilatancy fluctuations in the critical state; (4) Vorticities in the
displacement field assisted by rolling between the grains reduce the dissipation with respect to the expected
value of simple shear. The implications of these rotational modes in the Cosserat theory and in the study of
tectonic activity are outlined.

1 INTRODUCTION

The understanding of localized failures in granu-
lar materials in the evaluation of natural hazards is
growing in importance in this day and age. Catas-
trophic events such as earthquakes, landslides or snow
avalanches produce mass displacements large enough
to devastate entire villages or towns. Typically these
deformations are localized in thin layers which are
called shear bands.

Traditional continuum theories describe shear
bands as interfaces along which solid masses move
like rigid blocks sliding against each other. Many
physical effects are neglected in this description. For
example, measures of seismic activity and heat flow in
the San Andres fault show areas extended over hun-
dreds of kilometers, called seismic gaps, where the
current earthquake activity is quite lower than in the
past (Mora and Place 1999). As an explanation of
these gaps, it has been proposed that the material in
shear bands organizes itself in such a way that it acts
as a gear mechanism (Mahmoodi-Baran, Herrmann,
and Rivier 2004). The rolling between the grains may
explain the lack of heat production and earthquakes.

In this contribution we present a micromechanical
investigation of the formation and dynamics of shear
bands using discrete element modeling. In Section 2
we focus on the micromechanical description of strain
localization and the thickness of shear bands. The
stress and dilatancy fluctuations in shear bands and
the role of the rotational modes in the heat dissipation
is discussed in Section 3.

2 SHEAR BAND FORMATION
We study the strain localization by using granular dy-
namics simulations of polygonal packings. The poly-
gons interact via contact forces with a normal and
a tangential stiffness of kn = 160MPa and kt =
0.33kn, and a Coulomb friction coefficient of µ =
0.25. The boundary conditions are chosen in order to
mimic the experimental tests under plane strain con-
ditions: First, a confining pressure is applied to the
sample through a flexible membrane. Then, two hori-
zontal walls at the top and bottom of the packing are
used to apply vertical loading with constant velocity
(Alonso-Marroquin 2004).

The deformation of the assembly involves creation
and loss of contacts as well as restructuring by means
of rolling and sliding contacts. These changes imply
a continuous variation of the stress-strain relation and
a change of the void ratio during load. The stress
tensor is calculated from the forces applied on the
boundary of the sample as σij = 1

A

∑
b f

b
i x

b
j , where ~xb

is the point of application of the boundary force ~f b

and A is the area enclosed by the membrane. From
the principal values of this tensor, one can define the
mean normal stress p= (σ1 +σ2)/2 and the deviatoric
stress q = (σ1 − σ2)/2. The axial strain is calculated
as ε1 = ∆H/H0, where H is the height of the sample.
The volumetric strain is given by εV = ∆A/A0.

The dependence of the deviatoric stress and the vol-
umetric strain on the axial strain are shown in Fig. 1
for different confining pressures. A continuous de-
crease of the initial slope of the stress-strain curve
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Figure 1: Deviatoric stress and volumetric strain ver-
sus axial strain for different confining pressures.

is observed. Loading rearranges the contact network
by means of sliding contacts, which in turn reduces
the stiffness of the material. The initial compaction
turns gradually to dilatancy. This transition is caused
by loss of contacts perpendicular to the load direc-
tion, allowing the contact network to rearrange itself
and inducing large plastic deformations. Near failure,
the amount of plastic deformation is much larger than
the elastic one. This considerably reduces the stiffness
with respect to its initial value and makes the sample
potentially unstable.

Plastic deformation by means of sliding contacts
turns out to be a precursor mechanism of strain local-
izations. The frictional dissipation is uniformly dis-
tributed at the beginning of the load and it tends
progressively to localize in thin layers, which ends
up with the shear band formation (Alonso-Marroquin
2004). Near failure, the orientational distribution of
sliding contacts has its maximal value between the
Mohr-Coulomb angle and the Roscoe angle, but
rather closer to the former (Alonso-Marroquin, Lud-
ing, Herrmann, and Vardoulakis 2004). The shear
band is given by a 6− 8 grain diameters thick layer
where the frictional dissipation is more intense than
on the average.

The characteristic width of the shear of the band

Figure 2: Principal stress directions of the individual
grains after failure (ε1 = 0.07). The confining pressure
is p0 = 160KPa.

can be associated to the propagation of stress inside
the grains. The stress tensor at each particle P is given
by σPij = 1

a

∑
c f

c
i `
c
j where a is the area of the polygon,

f ci is the contact force and `cj is the branch vector, con-
necting the center of mass of the polygon to the point
of application of the contact force. The sum goes over
all the contacts of the particle. The principal stress
direction at each grain is represented in Fig. 2 by a
cross. The length of the lines represents how large
the components are. At the beginning of the load-
ing, the major principal stress is almost parallel to the
load direction, forming column-like structures which
are usually called chain forces. At failure these chain
forces start buckling, and the buckled chains gradu-
ally concentrate as shear bands. The shear band width
corresponds to the characteristic length of such buck-
les, that does not depend on the sample size. Bucking
of each chain force involves rolling and sliding be-
tween the grains belonging to it, a feature which has
been used to provide a theoretical explanation of the
finite width of shear bands (Satake 1998).

3 FLUCTUATION INSIDE SHEAR BANDS
The Critical State Soil Mechanics presumes that for
large shear deformations a soil element will reach
asymptotically a limiting state characterized by an
isochoric deformation, where the stress ratio and the
frictional dissipation stay constant (Wood 1990). Nu-
merical simulations using polygonal packings show
that samples with different densities reach the same
critical state, where the density and the stress ratio
stay approximately constant, except for some fluctu-
ations (Peña, Lizcano, Alonso-Marroquin, and Her-
rmann 2004). These fluctuations are reflected in the
probability distribution of grain displacements, which
follows approximately a power law as is the case in
tectonic faults (Tillemans and Herrmann 1995). Sim-
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Figure 3: Displacement field in the shear cell

ulation shows also that different contact friction coef-
ficients lead to the same critical state (Peña, Lizcano,
Alonso-Marroquin, and Herrmann 2004). Therefore
this state does not depend only on interparticle fric-
tion, but further kinematical modes such as rolling
should affect this state. Recently it has been indicated
that due to collapsing of microstructure, the critical
state is approached on the average in the sense of di-
latancy and compaction fluctuations (Vardoulakis and
Georgopoulos 2004).

These fluctuations become apparent in simulations
of periodic shear cells. The cells consist of disks with
diameters between 0.4cm and 1.2cm. The normal and
tangential stiffnesses at the contact are kn = 160MPa
and kt = 16MPa. The friction coefficient is µ = 0.5.
We chose periodical boundary conditions in the hori-
zontal direction. A normal stress of σ = 16kPa and a
constant horizontal velocity of vx = 0.5mm/s in op-
posite directions are imposed on the confining plates,
see Fig. 3. The length of the cell is 120cm and the
thickness of the disks is 1cm.
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Figure 4: (a) Mean kinetic energy, (b) shear stress and
(c) void ratio versus time.

46 48 50 52 54
−47

−46

−45

−44

−43

−42

−41

−40

Figure 5: Displacement at the contacts.

The dynamics of the shear cell resembles in many
aspects the slip-stick activity in tectonic plates. This
is shown in Fig. 4, where we plot (a) the mean ki-
netic energy, (b) the shear force τ = (F top

x −F bot
x )/2L

at the walls (Fx are the horizontal component of the
forces applied on each plate) and (c) void ratio. The
energy stored during the shear is released in the form
of quakes. Each quake corresponds to a collapse of
stress columns which is reflected on an abrupt drop of
stress and void ratio. Between two quakes the stress
columns build up and the frictional contacts increase
leading to an elastoplastic response with constant di-
latancy.

Fig. 3 demonstrates that granular media do not sup-
port the idea of simple shear. The observed kinematic
suggests that at any time we deal with two popula-
tions of grains: (a) Grains organized in large vorticity
cells and (b) grains which through pronounced rolling
accommodate the cells to make them more compati-
ble with the imposed kinematic boundary conditions.
Rolling at one contact can be visualized by marking
two points at each particle near to the contact. Af-
ter a small time interval, these points as well as the
contact point, are translated (Bagi and Kuhn 2004).
The translation of the contact at each grain is given
by a vector connecting the current position of the
contact with the marked point (Alonso-Marroquin,
Froiio, and Vardoulakis 2005). These vectors are plot-
ted in Fig. 5. We observe localized zones between
the vorticity cells where rolling is more frequent than
sliding.

The main effect of rolling is to reduce the fric-
tional dissipation with respect to simple shear. The
theoretical power dissipation of simple shear is given
by W = µσLvd where µ is the friction coefficient;
σ the normal stress; L the length of the shear cell; v
the relative velocity of the plates; and d is the thick-
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ness of the disks. The theoretical value is given by
W = 0.096 watts. This energy is bigger than the
computed mean frictional dissipation in the packing,
which isW ≈ 0.06watts (Alonso-Marroquin, Froiio,
and Vardoulakis 2005). (Viscous dissipation is negli-
gible). This reduction of dissipation due to rolling can
be associated to the lack of heat flux in seismic gaps,
where rolling between the rocks may play also an im-
portant role (Mora and Place 1999).

4 CONCLUSIONS
We have numerically studied the role of sliding and
rolling in shear bands. We observe a progressive lo-
calization of sliding contacts starting from the be-
ginning of the loading. Buckling of stress columns
ends up with shear bands with a characteristic width
of 6− 8 grain diameters. Building of stress columns
with constant dilatancy and collapse of columns in
the form of quakes characterizes the dynamics of the
shear band at the so-called critical state. Vorticity cells
assisted by rolling lead to a significant reduction of
heat dissipation with respect to the value given for
simple shear. The question that naturally arises is: Can
these rotational models explain the lack of seismic
activity and heat dissipation measures in the seismic
gaps?

In realistic shear bands, grains tend to fragment
leading to dense packings of grains of very different
sizes. Do rotational bearings exist in such dense
materials?. In the case of spherical grains, it is
possible to construct space filling configurations
iteratively (Mahmoodi-Baran, Herrmann, and Rivier
2004). Some of these configurations have a surprising
property: If one imposes rotation to any single
sphere, all others will rotate without any slip at the
contacts. Although in reality there are no such perfect
bearing packings, the rotational modes we observe
suggest the possibility of spontaneous formation of
vorticity cells, where rolling dominates over sliding.
As the continuum theory is concerned, the Cosserat
theory would be essential to capture the effect of
rolling in the overall deformation (Vardoulakis and
Sulem 1995; Mühlhaus and Vardoulakis 1987).
Apart from the stress, the couple stress tensor should
be introduced as a static variable, entering as the
counterpart of the rotational strain in the power
dissipation (Tordesillas, Walsh, and Gardiner 2004;
Ehlers, Ramm, Diebels, and D´Addetta 2003). A
better understanding of shear bands and earthquakes
may require a multi-scale analysis of the Cosserat
theory, connecting the micromechanical tractions and
deformations at individual contacts to their global
effects at the large scale of the seismic gaps.
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