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”The main shortcoming in the field of
constitutive modeling is that each
researcher (or group or researchers) is
developing his own constitutive
model. This model is in most cases
very intricate and, thus non-relocative.
i.e. another researcher is unable to
work with it. I can report from my
own experience that it took me several
months of hard work until I realized
that I was unable to obtain anything
with a constitutive model proposed by
a colleague. How can relocativity be
improved?”

D. Kolymbas 2000
The Misery of Constitutive Modeling
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Chapter 1

Zusammenfassung

Das mechanische Verhalten von Böden wurde mit Hilfe von Stoffgeset-
zen untersucht [1]. Stoffgesetze sind empirische Beziehungen, die auf
Laborversuchen mit Bodenproben beruhen. Seit einigen Jahren ist es
möglich, Böden auf dem Kornniveau zu untersuchen, um die mikromech-
anischen Aspekte von Bodendeformationen zu verstehen [2].

Ziel dieser Arbeit ist es, beide Forschungsansätze, welche die plastis-
chen Bodendeformationen untersuchen, zusammenzubringen. Um die
Auswirkung der Fabrik-Variablen [3–6], der Kettenkräfte [7, 8] und Rei-
bungskräfte [9] auf unterschiedliche Aspekte der Bodenplastizität zu er-
forschen, wurde ein einfaches molekulardynamisches Modell verwendet.
Herausragende Aspekte sind: Dilatanz [10], Versagen [11], Scherbands
[12, 13] und Ratcheting [14].

Die Auseinandersetzung dreht sich um zwei zentrale Fragen der Boden-
mechanik. Erstens: Ist die inkrementelle, nicht-lineare Theorie geeignet,
um die mechanische Antwort der Böden zu beschreiben? [1, 15] Zweit-
ens: Existiert ein ausschließlich elastischer Bereich, bei der Deformation
nicht-kohäsiver Böden? [16–18].

Um die molekulardynamische Methode zu entwickeln, wurden Polygone
benutzt, welche durch Kontaktkräfte wechselwirken [19, 20]. Diese Kräfte
sind: Elastizität, Viskosität und Reibung [21]. Bei den biaxialen Simu-
lationen wurden die Randbedingungen so gewählt, dass diese möglichst
genau der Hüllmembran und den elastischen Wänden entsprechen, wie sie
in den Versuchen verwendet werden [12].
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Zur Erzeugung von polygonalen Ensembles wurde die Voronoi-
Gebietzerlegungsmethode verwendet [22]. Mit dieser Methode können
zahlreiche unterschiedliche Körner erzeugt werden, wie sie in wirklich
existierenden Böden vorkommen. Um Beispiele mit unterschiedlichen
Dichten zu generieren, begannen wir unsere Simulationsreihe mit sehr
lockeren Proben, die nach und nach mit Gravitationskräften verdichtet
wurden. Anschließend wurden die Proben durch zyklische Scherung
solange weiterverdichtet, bis sie die gewünschte Dichte erreichten.

Biaxialversuche ergaben, dass die Dehnungslokalisierung die häufigste Art
des Versagens ist. Die Hauptmerkmale des Scherbandes stimmen mit der
Coulomb-Lösung überein. Das Auftreten der Dilatanz und die fortschrei-
tende Lokalisierung der plastischen Deformation vor dem Versagen kann
nicht mit solchen einfachen Methoden beschrieben werden. Bei Simu-
lationen mit unterschiedlichen Anfangsdichten kann beobachtet werden,
dass die Festigkeit und die Dichte einen konstanten kritischen Zustand an-
nehmen. Dieser Zustand ist durch das Erreichen konstanter Schubspan-
nungen und konstanter Dichten gekennzeichnet [23].

Ein Repräsentatives Volumenelement REV wurde verwendet, um die nu-
merischen Simulationen mit den Stoffgesetzen zu vergleichen. Um die
starken Schwankungen von Spannung und Deformation abzuschwächen,
wurde der Durchschnitt über dieses Volumen gebildet [6]. Jedes Korn
wurde als ein Teil des Kontinuums betrachtet. Unter der Annahme, dass
die Spannung und Dehnung des Korns in einer kleinen Kontaktregion
konzentriert sind, erhalten wir Ausdrücke für die durchschnittliche Span-
nung und Dehnung in Abhängigkeit von den Kontaktkräften und den indi-
viduellen Verschiebungen und Rotationen der Körner.

Die inkrementelle Spannungs-Dehnungs-Beziehung der granularen Pack-
ung wird gelöst, indem zunächst die Spannungen inkrementell mit gle-
icher Amplitude, aber unterschiedlichen Richtungen erhöht und dann die
inkrementellen Dehnungen gemessen werden. Alle Spannungsinkremente
werden auf identische polygonale Packungen angewendet. Wie die elasto-
plastischen Theorien vorhersagen, weisen die resultierenden Antworten
zwei Tensorielle Zonen auf [15]. Wir stellen auch fest, dass das Super-
positionsprinzip erfüllt ist, was im Einklang mit der Existenz dieser Ten-
soriellen Zonen steht. Diese Ergebnisse zeigen, dass für die Beschreibung
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der inkrementellen Antwort dieses Modells die Elasto-Plastizität passender
ist als die inkrementellen nichtlinearen Modelle.

Die Grundelemente der elastoplastischen Theorie werden erzeugt, indem
beide, die elastische und die plastische inkrementelle Antwort, berechnet
werden [21]. Trotz der Einfachheit unserer Modelle können die grundle-
genden Eigenschaften wirklicher Böden reproduziert werden, wie z.B. die
Spannungs-Dilatanz- Beziehung [10], die nicht-assoziierte Fließregel der
Plastizität [11] sowie die Existenz von Instabilitäten im Verfestigungsbere-
ich [24].

Was die Verbindung des makromechanischen Verhaltens mit der
mikromechanischen Umordnung anbelangt, können zwei wichtige Ergeb-
nisse ermittelt werden: Erstens die Abhängigkeit der elastischen Steifigkeit
von der Anisotropie der Korngerüstes [21]. Zweitens die Korrelation
zwischen der plastischen Verformung und den Fabrik-Koeffizienten der
gleitenden Kontakte [25]. Aus den Ergebnissen ist ersichtlich, dass die
Bestimmung der Entwicklungsgleichung des Fabrik-Koeffizienten eine
mikromechanische Basis der elastoplastischen Theorie darstellt.

Die Notwendigkeit einer neuen theoretischen Basis für die Bodenplas-
tizität ergibt sich aus der Tatsache, dass einer der wichtigsten Bestandteile
dieser Theorie, der elastische Bereich, mit den experimentellen Ergeb-
nissen nicht übereinstimmt [16]. Unsere Absicht war es, diesen elastis-
chen Bereich zu erforschen, indem zuerst die Proben belastet und dann
wieder entlastet werden, um sie dann in verschiedenen Richtungen im
Spannungsraum erneut zu belasten [26]. In jeder Richtung fanden wir
kontinuierliche Übergänge von elastischem zu elastoplastischem Verhal-
ten, so dass wir kein rein elastisches Regime identifizieren konnten. Auf
mikromechanischer Ebene ist es ersichtlich, dass dieser Effekt von der Tat-
sache herrührt, dass jede Ladung gleitende Kontakte beinhaltet.

Dadurch, dass das elastische Regime vernachlässigbar klein wurde, stellte
sich das hysteretische Verhalten als ein überraschender Aspekt der Unter-
suchungen heraus [27]. Bei quasi-statischer, zyklischer Belastung folgt
auf das hysteretische Verhalten eine schrittweise Akkumulation der plas-
tischen Verformung mit der Zyklenzahl. Eine numerische Simulation von
Schubspannungszyklen mit Amplituden zwischen 0.001p und 0.6p (p ist
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der Seitendruck) zeigt einen asymptotischen Verformungsverlauf, wobei
eine konstante Verformungszunahme pro Zyklus auftritt. Das durch die
Zustandstandsvariablen Spannung und Porenzahl beschriebene System er-
reicht dabei niemals einen kritischen Zustand. Dieser unerwartete Ef-
fekt, der granulares Ratcheting genannt wird, kann nicht mit den gängigen
elasto-plastischen Konzepten interpretiert werden. Die elastoplastische
Theorie besagt, dass für Ladezyklen unterhalb eines bestimmten Wertes,
der als Shakedown Limit bezeichnet wird, die Akkumulation der plastis-
chen Deformation nach einer bestimmten Anzahl von Zyklen zum Erliegen
kommt [28].

Das granulares Ratcheting wird aus mikromechanischer Sicht durch die
Beobachtung des Verlaufs der Mikrokontaktkräfte bei quasistatischer Be-
lastung des granularen Materials untersucht. Unsere Berechnungen zeigen,
dass jede Deformation, die auf den Rand wirkt, sich heterogen in der Probe
verteilt. Wenn die Probe isotrop komprimiert wird, erreichen einige Kon-
taktkräfte das Coulombsche Reibungskriterium |ft| = µfn. Dies führt zu
irreversiblen Verformungen im Korngerüst.

Zwischen der Steifigkeit der Probe und der Anzahl der gleitenden Kon-
takte wird eine hohe Korrelation bei zyklischer Belastung beobachtet.
Tatsache ist, dass während des Überganges von Belastung zu Entlastung
eine abrupte Abnahme der Zahl der gleitenden Kontakte auftritt. Als
Ergebnis lässt sich ein Sprung in der Steifigkeit beobachten. Hierbei ist
die Steifigkeit unter Entlastung größer als unter Belastung. Andererseits
lässt sich während der Belastungszyklen eine kontinuierliche Abnahme
der Steifigkeit beobachten. Dies zeigt die Abhängigkeit der Steifigkeitsab-
nahme von der wachsende Anzahl der gleitenden Kontakte.

Bei hinreichend kleiner Amplitude der zyklischen Belastung können die
bleibenden Verformungen der Probe durch das wiederholt erreichte Rei-
bungskriterium der Kontakte beschrieben werden. Über lange Zeiträume
verhält sich eine kleine Menge der Kontakte wie Rätschen. Diese erre-
ichen periodisch das Reibungskriterium und verursachen irreversible Ver-
formungen im Material. Sie rutschen in jeder Belastungsphase, und ver-
halten sich elastisch in den Entlastungsphasen.

Dieses Ergebnis legt nahe, dass die plastische Verformung des Bodens
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mit Hilfe geeigneter Statistiken über die Reibungskontakte beschrieben
werden kann. Diese Statistik kann formal in das Stoffgesetz einge-
bunden werden, indem geeignete Strukturtensoren als Zustandsgrößen
des Korngerüsts eingeführt werden. Diese Strukturtensoren würden eine
mikromechanische Interpretation der Stoffgesetzes liefern.
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Chapter 2

Introduction

The 1960s was significant for the development of soil mechanics and, in
particular, the constitutive models for soils. Prior to this decade, soil me-
chanics was confined to linear elastic theory [29] and the Mohr-Coulomb
failure criterion [30]. A radical change of the perspectives of soil plasticity
occurred after the pioneering work of Roscoe and his coworkers in Cam-
bridge, which led to the basic principles of the Critical State Theory [31].
The prototype of this theory was the so-called Cam-Clay model [32]. With
five material constants, this model was the first nonlinear representation
describing several aspects of deformation and failure of soils.

In an attempt to cover further aspects of the cyclic soil behavior, subse-
quent developments have given rise to a great number of constitutive mod-
els [1]. Unfortunately these models give only satisfactory results in the
small range of experiments where they were developed. Other models
attempting to represent a wider range of phenomena had to incorporate
a large number of parameters. These parameters not only lack physical
meaning, but are also very difficult to calibrate with the experimental data.

This tendency to increase the number of constants in the models has been
pointed out by Scott in the workshop Constitutive Equations for Granu-
lar Noncohesive Soils in 1988 [33]. In this meeting models with up to
40 calibration parameters were presented. By performing a survey on the
constitutive relations presented in previous international workshops, he re-
ported that the number of constants was growing at about 12% per year.
Extrapolating this observation, he estimated that models developed in the

7
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year 2000 would have 184 constants!

In contradiction to Scott’s predictions, no model has been reported with
this many material parameters until now. However, the large number of
concepts that have been introduced has driven a proliferation of consti-
tutive models [34]. The strong controversy concerning the validity of a
large number of models and the lack of experimental meaning of the ma-
terial parameters has led the practitioners to lose confidence in constitutive
modeling. This has resulted in a gap between research and practice in
geotechnical engineering [35].

In geotechnical applications, it is desirable that the parameters of a consti-
tutive relation depend directly on the properties of the grains. In the simple
case of dry soils, granulometric properties can involve grain shape and an-
gularity, distribution of grain sizes, friction coefficient and stiffness of the
grains [36]. Unfortunately, the existing models do not consider these gran-
ulometric properties, but employ unfamiliar abstract parameters instead.

An alternative for the investigation of soils at the grain scale is the discrete
element modeling (DEM) [37]. Examples of this approach are the contact
mechanics method (CM) [9, 38] and the molecular dynamics (MD) [39].
These discrete approaches take into account details like particle shape, size
distribution, friction and cohesion between the grains. The interaction
between the particles is modeled by the introduction of suitable contact
forces. These forces are given in terms of a reduced number of parame-
ters. The MD method introduces the normal and tangential stiffnesses, and
the friction coefficients as the material constants of the grains. In CD the
particles are supposed to be infinitely rigid, and the interactions between
the grains are described by a Coulomb friction law with a single friction
coefficient.

Disks or spheres are used in order to capture the granularity of the materials
[5, 8, 37, 40]. The simplicity of their geometry allows one to reduce the
computer time of calculations. However, they do not take into account the
diversity of grain shapes in realistic materials. A more detailed description
with three-dimensional non-spherical particles has been presented [41], but
the applicability of these models is still limited by the computational time
of the simulations.
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The comparison of the simulation with the constitutive theories requires a
homogenization technique. This is a formalism that allows us to derive
macromechanical quantities from micromechanical variables. Different
homogenization techniques have been used to derive the stress [17, 42, 43]
and the strain tensor [4, 44–46]. Although the different homogenization ap-
proaches converge to the same micromechanical expression for the stress
tensor, the micromechanical definition of the strain tensor is still under
discussion.

From the derivation of the stress-strain relation one can bridge the gap
between the discrete and continuum approaches. The incremental theory
provides a simple method to obtain the incremental stress-strain relation
directly from DEM simulations without recourse to any particular consti-
tutive model [24]. This method has been used to calculate the incremen-
tal response of disks [40] and spheres [47, 48]. Some recent results seem
to contradict many well-established concepts of the elasto-plastic theory
[48, 49]. However, it should be addressed that the behavior of spherical
packings is qualitatively different from realistic soil samples. In particular,
it has been shown that the friction angle of a packing of spheres is much
lower than the experimental values for sand [49]. This is given by the fact
that a sphere can rotate much more easily inside a packing rather than an
arbitrarily shaped grain. It is, therefore, of obvious interest to study the
incremental response of non-spherical particles.

In this work we perform MD simulations using a simplified model, where
the particles are represented by randomly shaped polygons. This model
will be applied to perform a micromechanical investigation of plastic de-
formation of soils. In reality, the plastic deformation of granular materials
is produced by grain rearrangements and grain crushing. In our model
we assume that the grains cannot break, and we take into account only of
the role of the sliding contacts in the plastic deformation of the granular
assembly.

This work is organized as follows: In Chapter 3 we introduce the basic
ingredients of the model. Chapter 4 considers the biaxial test, which is
discussed in the frame of the Mohr-Coulomb criterion and the Critical
State Theory. In Chapter 5 we introduce an homogenization procedure,
which will be used to calculate the incremental relation of the models. The
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elasto-plastic and the hypoplastic features of the incremental response are
discussed in this chapter. In Chapter 6 the stiffness tensor and the flow rule
are calculated from the resulting incremental response. The constitutive
response is obtained in terms of some internal variables, which take into
account the anisotropy induced by the loading on the contact network. We
also explore two basic concepts of elasto-plasticity: the Hill condition of
stability and the question of the existence of an elastic regime.

In Chapter 7 we investigate the response of dense polygonal samples when
they are subjected to load-unload stress cycles. The accumulation of per-
manent deformation and the compaction of the sample are studied as a
function of the number of cycles, taking different loading amplitudes. We
report on the existence of ratcheting regimes for extremely small loading
amplitudes. This ratcheting is studied at the grain level, following the evo-
lution of the contact forces, and the kinematics of the individual grains.
We also investigate the correlation between the hysteretic behavior of the
stiffness and the evolution of the sliding contacts.



Chapter 3

The Model

In this chapter, an extension of the two-dimensional discrete element meth-
ods that have been used to model granular materials via polygonal parti-
cles [19, 50] are presented. The model captures many aspects of realistic
granular materials, such as the elasticity, friction, damping forces and the
possibility of slippage. Boundary conditions are introduced to model sur-
rounding flexible membranes and rigid walls. Using a simplified method of
random generation of polygons, we are able to capture an important aspect
of granular soils that is the diversity of shapes and sizes of the grains.

Of course, there are some limitations in the use of such a two-dimensional
model to study physical phenomena that are three-dimensional in nature.
These limitations have to be kept in mind in the interpretation of the re-
sults and its comparison with the experimental data. In order to give a
three-dimensional picture of this model, one can consider the polygons
as a collection of prismatic bodies with randomly-shaped polygonal basis.
Alternatively, one could consider the polygons as three-dimensional grains
whose centers of mass all move in the same plane. It is the author’s opin-
ion that it is more sensible to consider this model as an idealized granular
material that can be used to check the constitutive models.

The details of the particle generation, the contact forces, the boundary
conditions and the molecular dynamics simulations are presented in the
following sections.

11



12 3.1 Generation of polygons

3.1 Generation of polygons

The polygons representing the particles in this model are generated by us-
ing the method of Voronoi tessellation [50]. First, a regular square lattice
of side ` is created. Next, we set a random point in a square of side length a
inside the cells of the rectangular grid. Then, each polygon is constructed,
assigning to each point that part of the plane that is nearer to it than to
any other point. The details of the construction of the Voronoi cells can be
found in the literature [22, 51]. The tessellations can also be implemented
by using standard programs, such as Matlab. The details of the construc-
tion are skipped, and the most salient geometrical aspects of these Voronoi
constructions are presented.

Figure 3.1: Voronoi construction used to generate the convex polygons. The dots indicate
the point used to the tessellation. Periodic boundary conditions were used. Four different
values of a are chosen: 0.5`, `,2` and 20`.
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Figure 3.2: Cumulative distribution of polygon areas. The solid line shows the fit of
the data using an error function. The distribution is calculated for 1.8 × 104 polygons
generated with a = `.

Fig. 3.1 shows random tessellations for different values of a. The tessella-
tion with a ≤ ` corresponds to the so-called vectorizable random lattices
[22]. They are Voronoi constructions with low disorder, a narrow distribu-
tion of areas and a certain anisotropy when a < ` [52]. This anisotropy
is reflected in the fact that the orientational distribution of the edges is not
uniform. The computational advantage of the constructions with a ≤ ` is
that the number of potential neighbors of each polygon is bounded to 20
[22]. This property allows one to fix the neighbor list during the simula-
tion, which reduces the time required to calculate the interactions between
the polygons [19].

The tessellations with a > ` lead to isotropic Voronoi tessellations with
a wide, asymmetric distributions of areas of the polygons. In particular,
the limit a� ` corresponds to the so-called Poisson tessellations [22, 51].
In the case where a = ` the orientational distribution of edges is isotropic,
and the diversity of areas of polygons is symmetric around `2, as shown the
Fig. 3.2. These two properties are observed in natural river sand [12, 53].
The probabilistic distribution of areas follows approximately a Gaussian
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Figure 3.3: Distribution of number of edges. Five different random tessellations of 60×60
cells with a = ` were used in the calculations. The bars show the standard deviation of
the data.

distribution with a variance of 0.36`2. Voronoi tessellations with a = `
will be used in this work.

Using the Euler theorem, it has been shown analytically that the mean num-
ber of edges of any random tessellation must be 6 [51]. Further statistical
measures have not been analytically derived and they have to be estimated
numerically [22]. The distribution of number of edges of the polygons has
been numerically calculated here in the case a = ` using 5 different ran-
dom tessellations of 60 × 60 cells. We found that the number of edges is
distributed between 4 and 8 for 98.7% of the polygons, as shown Fig. 3.3.

Note that volume fraction of this Voronoi construction is one. This perfect
packing is an unrealistic condition of granular materials. In order to have
packing fractions lower than one we use a procedure which is explained in
Sec. 4.4.
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3.2 Contact forces

In order to calculate the forces, we assume that all the polygons have the
same thickness L. The force between two polygons is written as F = fL

and the mass of the polygons is M = mL. In reality, when two elastic
bodies come into contact, they have a slight deformation in the contact
region. In the calculation of the contact force we suppose that the polygons
are rigid, but we allow them to overlap. Then, we calculate the force from
this virtual overlap.

The first step for the calculation of the contact force is the definition of the
line representing the flattened contact surface between the two bodies in
contact. This is defined from the contact points resulting from the intersec-
tion of the edges of the overlapping polygons. In most cases, we have two
contact points, as shown in the left of Fig. 3.4. In such a case, the contact
line is defined by the vector C =

−−−→
C1C2 connecting these two intersection

points. In some pathological cases, the intersection of the polygons leads
to four or six contact points. In these cases, we define the contact line by
the vector C =

−−−→
C1C2 +

−−−→
C3C4 or C =

−−−→
C1C2 +

−−−→
C3C4 +

−−−→
C5C6, respec-

tively. This choice guarantees a continuous change of the contact line, and
therefore of the contact forces, during the evolution of the contact.

The contact force is separated as f c = f e + f v, where f e and f v are the
elastic and viscous contribution. The elastic part of the contact force is
decomposed as fe = f enn̂

c + f et t̂
c. The calculation of these components is

explained below. The unit tangential vector is defined as t̂c = C/|C|, and
the normal unit vector n̂c is taken perpendicular to C. The point of appli-
cation of the contact force is taken as the center of mass of the overlapping
polygon.

3.2.1 Normal elastic force

As opposed to the Hertz theory for round contacts, there is no exact way
to calculate the normal force between interacting polygons. An alternative
method has been proposed in order to model this force [19]. In this method,
the normal elastic force is calculated as f en = −knA/Lc where kn is the
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Figure 3.4: Contact pointsCi before (left) and after the formation of a pathological contact
(right). The vector denotes the contact line. t represents the time step.

normal stiffness, A is the overlapping area and Lc is a characteristic length
of the polygon pair. Our choice of Lc is 1/2(1/Ri + 1/Rj) where Ri

and Rj are the radii of the circles of the same area as the polygons. This
normalization is necessary to be consistent in the units of force [50].

3.2.2 Frictional forces

In order to model the quasistatic friction force, we calculate the elastic
tangential force using an extension of the method proposed by Cundall
and Strack [37]. An elastic force f et = −kt∆xt proportional to the elas-
tic displacement is included at each contact. kt is the tangential stiffness.
The elastic displacement ∆xt is calculated as the time integral of the tan-
gential velocity of the contact during the time when the elastic condition
|f et | < µf en is satisfied. The sliding condition is imposed, keeping this
force constant when |f et | = µf en. The straightforward calculation of this
elastic displacement is given by the time integral starting at the beginning
of the contact:

∆xet =

∫ t

0

vct (t
′)Θ(µf en − |f et |)dt′, (3.1)
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where Θ is the Heaviside step function and vct denotes the tangential com-
ponent of the relative velocity vc at the contact:

vc = vi − vj − ωi × `i + ωj × `j. (3.2)

Here vi is the linear velocity and ωi is the angular velocity of the particles
in contact. The branch vector `i connects the center of mass of particle i
with the point of application of the contact force.

3.2.3 Damping forces

Damping forces are included in order to allow for rapid relaxation during
the preparation of the sample, and to reduce the acoustic waves produced
during the loading. These forces are calculated as

f cv = −m(γnv
c
nn̂

c + γtv
c
t t̂
c), (3.3)

beingm = (1/mi+1/mj)
−1 the effective mass of the polygons in contact,

n̂c and t̂c are the normal and tangential unit vectors defined before, and
γn and γt are the coefficients of viscosity. These forces introduce time
dependent effects during the cyclic loading. However, we will show that
these effects can be arbitrarily reduced by increasing the time of loading,
as corresponds to the quasistatic approximation.

In order to solve the equations of motion, it is necessary to specify the
forces acting on the particles on the boundary. Two different boundary
conditions are used in the calculations. The floppy boundary method al-
lows one to perform a stress-controlled test on the sample without impos-
ing any restriction on the deformation of the assembly. Elastic walls can
also be used to control the deformation of the polygonal assembly. These
two boundary conditions are presented in the following sections.
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3.3 Floppy boundary

The method of floppy boundary is introduced to model the typical biaxial
test used to investigate the strain localization [53]. In this test, a prismatic
granular sample, surrounded by a latex membrane, is placed between two
fixed walls to create plane strain condition. Then the sample is subjected to
axial loading, superimposed by a confining pressure applied on the mem-
brane.

We are going to discuss how the latex membrane can be modeled. One way
would be to apply a perpendicular force on each edge of the polygons be-
longing to the external contour of the sample. Actually, this does not work
because the force will act on all the fjords of the boundary. This produces
an uncontrollable growth of cracks that with time, end up destroying the
sample. With a latex membrane this cannot happen because the bending
stiffness of the membrane does not allow the pressure to penetrate in all the
fjords of the sample. To model such a membrane, we will introduce a cri-
terion which restricts the boundary points that are subjected to the external
stress.

The algorithm to identify the boundary is rather simple. The lowest ver-
tex p from all the polygons of the sample is chosen as the first point of
the boundary list b1. In Fig. 3.5 P is the polygon that contains p, and
q ∈ P ∩ Q is the first intersection point between the polygons P and Q
in counterclockwise orientation with respect to p. Starting from p, the ver-
tices of P in counterclockwise orientation are included in the boundary
list until q is reached. Next, q is included in the boundary list. Then, the
vertices of Q between q and the next intersection point r ∈ Q ∩ R in the
counterclockwise orientation are included in the list. The same procedure
is applied until one surrounds the sample and reaches the lowest vertex p
again. This is a very fast algorithm, because it only makes use of the con-
tact points between the polygons, which are previously calculated to obtain
the contact force in each time step.

Let’s define {bi} the set of points of the boundary and {mi} the set of
boundary points that are in contact with the membrane. They are selected
using a recursive algorithm. It is initialized with the vertices of the smallest
convex polygon that encloses the boundary (see Fig. 3.6). The lowest point
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Figure 3.5: Algorithm used to find the boundary.

of the boundary is selected as the first vertex of the polygon m1 = b1. The
second one m2 is the boundary point bi that minimizes the angle 6 (

−→
b1bi)

with respect to the horizontal. The third one m3 is the boundary point bi
such that the angle 6 (

−−→
m2bi,

−−−→m1m2) is minimal. The algorithm is recursively
applied until the lowest vertex m1 is reached again.

The points of the boundary are iteratively included in the list {mi} us-
ing the bending criterion proposed by Åstrøm [54]. For each pair of con-
secutive vertices of the membrane mi = bi and mi+1 = bj we choose
that point from the subset {bk}i≤k≤j which maximizes the bending angle
θb = 6 (

−→
bkbi,
−−→
bkbj). This point is included in the list whenever θb ≥ θth.

Here θth is a threshold angle for bending. This algorithm is repeatedly ap-
plied until there are no more points satisfying the bending condition. The
final result gives a set of segments {−−→mimi+1} lying on the boundary of the
sample as shown in Fig. 3.6.

In order to apply stress at the boundary, the segments of the membrane
are divided into two groups: A-type segments are those that coincide with
an edge of a boundary polygon; B-type segments connect the vertices of
two different boundary polygons. On each segment of the membrane T =
∆x1x̂1 + ∆x2x̂2, we apply a force
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Figure 3.6: Floppy boundary obtained with threshold bending angle θth = π, 3π/4, π/2
and π/4, the first one corresponds to the minimum convex polygon that encloses the
sample.

fms = −σ1∆x2x̂1 + σ2∆x1x̂2 (3.4)

Here x̂1 and x̂2 are the unit vectors of the Cartesian coordinate system. σ1

and σ2 are the components of the stress we want to apply on the sample.
This force is transmitted to the polygons in contact with it. If the segment
is A-type, this force is applied at its midpoint; if the segment is B-type,
half of the force is applied at each one of the vertices connected by this
segment. An additional damping force fmv = −γbmiv

b is included to re-
duce the acoustic waves produced during loading. Here γb is the coefficient
of viscosity of the floppy boundary, and mi is the mass of the polygon and
vb the velocity of the polygon.

This boundary condition has been used in Chapter. 4 to simulate biaxial
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tests. We have observed shear bands whose orientation seems to be sen-
sitive to the threshold bending angle θth. However, some problems have
been detected in the use of such bending conditions. For small values of
θth the floppy boundary penetrates too much in the fjords, producing some
instabilities in the boundary polygons. This instability is reflected in large
displacements on boundary polygons for small loadings, eventually lead-
ing to their detachment.

Moreover, for values of θth close to π we have detected numerical prob-
lems. When the sample is kept at constant isotropic pressure, the assem-
bly cannot reach an equilibrium configuration. We have observed that in
these cases the floppy boundary flips periodically to different configura-
tions, giving rise to spurious oscillations in the assembly. A reason for this
numerical problem could be the fact that this method leads to boundary
forces which do not change continuously with time. In these cases, the
numerical method used to solve the equations of motion cannot guarantee
stability and convergence of numerical solutions.

3.4 Walls as boundaries

Usually, the granular assemblies are compacted and loaded within a set of
confining walls. These walls act as boundary conditions, and can be moved
by specifying their velocity or the force applied on them. The response
of the walls can be used to calculate the global stress and strain of the
assembly.

The interaction of the polygons with the walls is modeled here by using
a simple visco-elastic force. First, we allow the polygons to penetrate the
walls. Then, for each vertex of the polygon α inside of the walls we include
a force

f b = −knδn− γbmαv
b, (3.5)

where δ is the penetration length of the vertex, n is the unit normal vector
to the wall, and vb is the relative velocity of the vertex with respect to the
wall.
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3.5 Molecular dynamics simulation

The evolution of the position xi and the orientation ϕi of the polygon i is
governed by the equations of motion:

miẍi =
∑

c

fc
i +

∑

b

f bi +
∑

m

fmi ,

Iiϕ̈i =
∑

c

`ci × fc
i +

∑

b

`bi × f bi +
∑

m

`mi × fmi . (3.6)

Heremi and Ii are the mass and moment of inertia of the polygon. The first
sum goes over all those particles in contact with this polygon; the second
one over all the vertices of the polygon in contact with the walls, and the
third one over all the edges in contact with the floppy boundary. fm and f b

are the forces applied on the polygons in contact with the floppy boundary
and the walls, respectively, which where defined in Sec. 3.3 and Sec. 3.4.
The interparticle contact forces f c are given by

fc = −(knA/Lc + γnmv
c
n)n

c − (∆xct + γtmv
c
t )t

c,

(3.7)

where A is the overlapping area of the interacting polygons and Lc the
characteristic length of the contacts, both defined in Subsect. 3.2.1 ∆xet
denotes the elastic part of tangential displacement of the contact, which
were defined in Sec. 3.2.2. σbi is the stress applied on the boundary seg-
ment with normal vector Nb. The effective mass m of the polygons, the
coefficient of viscosity γn and γt, and the relative velocity at the contact vc

are defined in Sec. 3.2.3.

We use a fifth-order Gear predictor-corrector method for solving the equa-
tion of motion [39]. This algorithm consists of three steps. The first step
predicts position and velocity 0f the particles by means of a Taylor expan-
sion. The second step calculates the forces as a function of the predicted
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Symbol Default value Parameter
kn 160MPa normal contact stiffness
kt 52.8MPa tangential contact stiffness
µ 0.25 friction coefficient
γn 4× 103s−1 normal coefficient of viscosity
γt 8× 102s−1 tangential coefficient of viscosity
γb 4× 101s−1 coefficient of viscosity of the walls
t0 0.1s time of load
dt 2.5× 10−6s time step for the molecular-dynamics
ρ 1gr/cm3 density of the grains
` 1.0cm size of the cells of the Voronoi generation
p0 160KPa confining pressure
θth π/4 bending angle of the floppy boundary

Table 3.1: Parameters of the Molecular dynamics simulations.

positions and velocities. The third step corrects the positions and veloci-
ties in order to optimize the stability of the algorithm. This method is much
more efficient than the simple Euler approach or the Runge-Kutta method,
especially for problems where very high accuracy is a requirement.

3.6 Determination of the parameters

The parameters of the molecular dynamics simulations were adjusted ac-
cording to the following criteria: 1) guarantee the stability of the numerical
solution, 2) optimize the time of the calculation, and 3) provide a reason-
able agreement with the experimental data.

There are many parameters in the molecular dynamics algorithm. Before
choosing them, it is convenient to make a dimensional analysis. In this
way, we can keep the scale invariance of the model and reduce the param-
eters to a minimum of dimensionless constants.

As shown in Table 3.1, there are 2 dimensionless and 10 dimensional pa-
rameters. The latter ones can be reduced by introducing the following
characteristic times of the simulations: the loading line t0, the relaxation
times tn = 1/γn, tt = 1/γt,tb = 1/γb and the characteristic period of
oscillation ts =

√
kn/ρ`2 of the normal contact.
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Using the Buckingham Pi theorem [55], one can show that the strain re-
sponse, or any other dimensionless variable measuring the response of the
assembly during loading, depends only on the following dimensionless pa-
rameters: α1 = tn/ts, α2 = tt/ts, α3 = tb/ts, α4 = t0/ts, the ratio
ζ = kt/kn between the stiffnesses, the friction coefficient µ and the ratio
p0/kn between the confining pressure and the normal stiffness.

The variables αi will be called control parameters. They are chosen in
order to satisfy the quasistatic approximation, i.e. the response of the sys-
tem does not depend on the loading time, but a change of these param-
eters within this limit does not affect the strain response. α1 = 0.1 and
α2 = 0.5 were taken large enough to have a high dissipation, but not too
large to keep the numerical stability of the method. α3 = 0.001 is cho-
sen by optimizing the time of consolidation of the sample in Sec. 4.4.
The ratio α4 = t0/ts = 10000 was chosen large enough in order to avoid
rate-dependence in the strain response, corresponding to the quasistatic
approximation. Technically, this is performed by looking for the value of
α4 such that a reduction of it by half makes a change of the stress-strain
relation less than 5%.

The parameters ζ and µ can be considered as material parameters. They
determine the constitutive response of the system, so they must be adjusted
to the experimental data. In this study, we have adjusted them by com-
paring the simulation of biaxial tests of perfect polygonal packings to the
corresponding tests with dense Hostun sand [53]. First, the initial Young
modulus of the material is linearly related to the value of normal stiffness
of the contact. Thus, kn = 160MPa is chosen by fitting the initial slope of
the stress-strain relation in the biaxial test. Then, the Poisson ratio depends
on the ratio ζ = kt/kn. Our choice kt = 52.8MPa gives an initial Poisson
ratio of 0.07. This is obtained from the initial slope of the curve of volumet-
ric strains versus axial strain. The angles of friction and the dilatancy are
increasing functions of the friction coefficient µ. Taking µ = 0.25 yields
a angles of friction of 30 − 40 degrees and dilatancy angles of 20 − 30
degrees. The experimental data yields angles of friction between 40 − 45
degrees and dilatancy angles between 7− 14 degrees. A better adjustment
would be made by including different void ratios in the simulations, but
this is beyond of the scope of this work.



Chapter 4

Biaxial test

An interesting phenomenon in pressure confined granular materials is that
the deformation under shearing is not homogeneous, but rather is concen-
trated in thin layers of intensive shearing [53]. This phenomenon has at-
tracted the attention of many researchers due to the fact that the classical
continuum theories lead to ill-posed mathematical problems [56]. Differ-
ent regularization approaches have been proposed, pointing to the neces-
sity to introduce the effect of the microstructure in the continuum relations.
These new models lead to certain theoretical predictions, which deserve
experimental corroboration.

In some recent studies, numerical simulations of sheared packing of disks,
spheres and polygons has also shown this localization of strain [57]. Nu-
merical experiments on simple ring shear show shear bands arising for
large deformation, having a characteristic width in terms of grain diame-
ters [58]. Shear bands have also been observed in numerical simulations
of the biaxial test of disk packing [59]. Particle rotations, which eventu-
ally give place to rotating bearings, is one of the major factors controlling
the dilatancy and failure of these discrete models. However, these free ro-
tations are far from the realistic micromechanical arrangements of soils,
where the nonsphericity of the contacts lead to an important contribution
of the slippage at the contacts to the total deformation of the granular as-
sembly.

In this chapter we study this strain localization using molecular dynamics
simulations of a dense packings of polygons. The boundary conditions are

25
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chosen in order to mimic the experimental setup of the biaxial test [53].
The latex membrane surrounding the granular sample is modeled by using
the method of floppy boundary explained in the last chapter. The axial
stress is controlled by moving two horizontal walls with constant velocity.
The results are used to evaluate the extent of the validity of the Mohr-
Coulumb failure criterion and the Critical State Theory.

This chapter is organized as follows. In Sec. 4.1 we introduce the basic
elements of the Mohr-Coulomb theory, which is used to describe the onset
of plastic deformation of soils. In Sec. 4.2 we present the simulation results
of the quasistatic loading with axial strain control. In Sec. 4.3 we present
some micromechanical aspects of the hardening process. Finally, Sec. 4.4
concerns the effects of the initial density on the response of the polygonal
packing.

4.1 Mohr-Coulomb analysis

The simplest description of the stability and failure of granular materials is
given by the Mohr-Coulomb criterion [11]. The basic assumption of this
theory is that the granular material behaves perfectly elastic, except in the
case where the normal σn and deviatoric σt stress components on a plane
satisfy the failure criterion:

σt = c+ σntan(ϕ), (4.1)

This is given by two material constants: angle of friction ϕ and the coeffi-
cient of cohesion c. The examination of the failure limit in the biaxial test
is performed by taking the principal values σ1 and σ2 of stress of a volume
element, as shown in the left side of Fig. 4.1. Let’s divide the element into
two pieces, separated by a plane with inclination angle θ. The equilibrium
condition of one of these pieces leads to:

σn = p+ q cos(2θ),

σt = q sin(2θ) (4.2)
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where p = (σ1 +σ2)/2 and q = (σ1−σ2)/2 are the pressure and deviatoric
stress components of the volume element. According to this equation, in a
diagram of σn versus σt, the stresses applied on this plane are represented
by a point in the circle with radius q centered at (p, 0) with an inclination
angle 2θ. The failure condition of Eq. (4.1) is represented in this diagram
by a cone with angle ϕ and a vertex located at (−c cotϕ, 0). This construc-
tion is shown in the right part of the Fig. 4.1. According to this, the failure
is reached when the circle touches the cone, and the failure plane has an
angle of orientation θC satisfying 2θC = 180◦ − β, where β is defined in
Fig. 4.1. Since ϕ+ β = 90◦, the orientation of the failure plane results:

θC = 45◦ + ϕ/2 (4.3)

Using the triangle from the left part of Fig. 4.1, one can obtain the material
parameters from the stress components p and q of the sample at failure:

sinϕ =
q

p+ c
(4.4)
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Figure 4.1: Mohr-Coulomb analysis of failure. Left: stress acting on a plane of the volume
element. Right: Mohr-Coulomb circle and failure cone.
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4.2 Simulation results

The analysis of failure is performed here by simulating biaxial tests on
polygonal packings. First, a confining pressure is applied to the sample
through the floppy boundary. Then, two horizontal walls at the top and
bottom of the packing are used to apply vertical loading with constant
velocity. The stress is calculated from the forces applied on the floppy
boundary as σij = 1

V

∑
b f

b
i x

b
j , where xb is the point of application of the

boundary force f b and V is the area enclosed by the floppy boundary [37].
From the principal values of this tensor, one can define the pressure and the
deviatoric stress as p = (σ1 + σ2)/2 and q = (σ1− σ2)/2. The axial strain
is calculated as ε1 = ∆H/H0, where H is the height of the sample. The
volumetric strain is given by εv = ∆V/V0, where V is the area enclosed
by the floppy boundary.

The evolution of the deviatoric stress and the volumetric strain are shown
in Fig. 4.2 for different confining pressures. The strain response is char-
acterized by a continuous decrease of the stiffness, i.e. the slope of the
stress-strain curve, from the very beginning of the load process. The fail-
ure is given by the peak stress value (i.e. the maximal stress reached during
the loading). The volumetric strain has a compaction regime from the be-
ginning of the load, and dilatancy before failure. The maximal dilatancy is
observed around the failure. For large loadings, the sample reaches a sta-
tionary state where the stress and the volume remain approximately con-
stant, except for some fluctuations which remain for large deformations.

An important remark is that the Mohr-Coulomb criterion does not provide
a complete description of the failure. First, the volume expansion should
be an integral part of this description. Second, the relation between the
pressure and the deviatoric stress at failure shows slight deviations from
the Mohr-Coulomb theory. As shown in Fig. 4.3, they are not related
linearly, but they approximately satisfy a power law

p

pr
= α(

q

pr
)β, (4.5)

where pr = 1MPa, α = 0.625 and β = 0.93. An interesting consequence
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Figure 4.2: Deviatoric stress and volumetric strain versus axial strain for different confin-
ing pressures.
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Figure 4.5: Shear band orientation (circles) compared to the Mohr-Coulomb solution
(diamonds) and the Roscoe Solution (triangles). The lines correspond to linear fits.

of this nonlinearity is that the envelope of all Mohr-Coulomb circles at
failure cannot be represented by a single straight line, as shown in Fig.
4.4. However, one can use the Mohr-Coulomb failure criterion in a local
sense, by approaching the envelope around each Mohr-Coulomb circle by
a straight line. This line can be constructed by taking the common tangent
of the two circles at pressure p − ∆p and p + ∆p. As shown in Fig.4.4,
the resulting straight lines from these constructions lead to a dependence
of the angle of friction and cohesive parameters with the pressure, so that
they cannot be considered as material parameters.

This local Mohr-Coulomb analysis seems to be relatively consistent with
the shear band orientation. Above the confining pressure of p0 > 160kPa,
we observed localization of strain as the typical mode of failure. This is
given by a narrow zone in the sample where the dilatancy, the rotation of
the particles, and the sliding between the grains are particularly intense.
The measure of the shear band orientation for different confining pressures
is shown in Fig. 4.2. The bars represent the uncertainty in the measure of
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the shear band, which is estimated as ∆θ = atan(∆w/∆l), where ∆w and
∆l are the width and the length of the shear band.

Most of the experimental data from biaxial tests on sand report that the
shear band orientation lies between the Mohr-Coulomb solution θC =
45◦ + ϕ/2 and the Roscoe Solution θR = 45◦ + Ψ/2 [13]. The latter
is defined by the angle of dilatancy Φ = asin(dεV /dγ), being dεV and
dεγ the increments of volumetric and deviatoric strains at the failure [31].
These limits are shown in Fig. 4.2. We observe that the inclination angles
are between these two angles with a tendency towards the Mohr-Coulomb
solution. The fact that these angles do not coincide is consistent with the
non-associativity of the plastic deformation of soils. This feature will be
studied in detail in Chapter 6.

4.3 Hardening

Although the Mohr-Coulomb criterion is a simple and elegant approach
to failure problems, this theory provides a too crude description of the
actual behavior of granular materials. In particular, the granular materials
do not show a perfectly elastic behavior up to the failure condition, but
rather develop plastic deformations as a precursor behavior. This process
is known as hardening in the literature of soil mechanics [11].

The hardening is investigated here at the grain level, by the evaluation of
the plastic deformation between the grains during the simulation. For each
polygon, the plastic deformation between two loading stages is calculated
as ξ =

∑
c |∆xc −∆xet | where ∆xc is the tangential displacement at each

contact and ∆xet is the elastic part of this displacement. The latter is cal-
culated after Eq. (3.1).

Fig. 4.6 shows the distribution of plastic displacements in four different
loading stages. Irreversible deformations are observed at the very begin-
ning of the loading. The plastic deformation is approximately uniform for
small loadings, and it presents a progressive localization during the loading
process. At failure, the shear band is identified by a narrow zone where the
sliding between the grains is more intense than on average. After failure,
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Figure 4.6: Plastic deformation at the grain during a loading of ∆ε1 = 0.001. The in-
tensity of the color represents the plastic deformation. The snapshot is taken for loading
stages with ε1 = 0.01, 0.02, 0.027 (failure) and 0.07.
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Figure 4.7: Principal stress directions of the individual grains at failure (left) and in the
post-failure (right).
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we observed two blocks moving one against another, separated by a shear
band of some 6− 8 grains diameters.

This continuous hardening process has indeed lead many authors to the
question of when the shear band occurs. It has been almost always assumed
that the shear band occurs at peak stress or beyond the failure [13]. In
contradiction to this, we observe some signals of localization of plastic
deformations before the failure, as shown in part (b) of Fig. 4.6.

An explanation of this apparent contradiction can be found by looking at
the distribution of the stress around the shear band. We calculate the av-
erage of the stress tensor at each particle as σij = 1

A

∑
c f

c
i `
c
j where A is

the area of the polygon, f ci is the contact force and `cj is the branch vector,
connecting the center of mass of the polygon with the center of application
of the contact force. The sum goes over all the contacts of the particle.
The principal stress direction at each grain is represented by a cross. The
length of the lines represents how large the components are.

During loading, we observe that the principal stress direction goes almost
perpendicular to the load direction, forming columnlike structures that are
called chain forces. At failure, these chain forces start buckling , and the
buckled chains gradually concentrate as shear bands in the post-failure pro-
cess, which cause a growth of void ratio, and therefore a reduction of the
strength in the shear band. For large deformations, one can see that the
chain forces are perpendicular to the loading direction outside of the shear
band, and they go almost perpendicular through the shear band. Due to
this fact, there is an abrupt change of the stress in the parallel direction to
the shear band, in agreement with the bifurcation analysis [13].

It is important to remark that the criterion to identify the moment of the
arising of a shear band is still not well defined in our simulations. If we
use the localization of sliding contacts, one may say that it appears before
failure. On the other hand, if one uses the increase of the void ratio, or the
buckling of the chain forces, it seems to appear in the post-failure behavior.
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4.4 Critical states

The previous simulations were performed using perfect packings of poly-
gons, with no porosity at the beginning of the simulation. This ideal case
contrasts with realistic soils, where only porosities up to a certain value can
be achieved. In this section, we present a method to create stable, irregular
packings of polygons with a given porosity.

The porosity can be defined using the concept of void ratio. This is defined
as the ratio of the volume of the void space to the volume of the solid
material. It can be calculated as:

v =
Vt

Vf − V0
− 1 (4.6)

This is given in terms of the area enclosed by the floppy boundary Vt, the
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Figure 4.8: Polygonal assembly confined by a rectangular frame of walls.
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sum of the area of the polygons Vf and the sum of the overlapping area
between them V0.

Of course, there is a maximal void ratio that can be achieved, because it is
impossible to pack particles with an arbitrarily high porosity. The maximal
void ratio vm can be detected as follows. First, we move the walls until a
certain void ratio is reached. Then, we find a critical value, above which
the particles can be arranged without touching. Since there is no contacts,
the assembly cannot support a load, and even applying gravity will cause
it to compactify. For a void ratio below this critical value, there will be
particle overlaps, and the assembly is able to sustain a certain load. This
critical value is around 0.28.

The void ratio can be decreased by reducing the volume between the walls.
The drawback of this method is that it leads to significant differences be-
tween the inner and outer parts of the boundary assembly, and it yields
unrealistic overlaps between the particles, giving rise to enormous pres-
sures. Alternatively, one can confine the polygons by applying gravity to
the particles and on the walls. Particularly, homogeneous, isotropic assem-
blies can be generated by a gravitational field g = −gr where r is the
vector connecting the center of mass of the assembly with the center of the
polygon.

When the sample is consolidated, repeated shear stress cycles are ap-
plied from the walls, superimposed to a confining pressure. The ex-
ternal load is imposed by applying a force [pc + qc sin(2πt/t0)]W and
[pc+qc cos(2πt/t0)]H on the horizontal and vertical walls, respectively. W
and H are the width and the height of the sample. If we take pc = 16kPa

and qc < 0.4pc , we observe that the void ratio decreases as the number
of cycles increases. Void ratios around 0.15 can be obtained. It is worth
mentioning that after some thousands of cycles the void ratio is still slowly
decreasing, making it difficult to identify this minimal value.

A third critical value for the void ratio can be obtained in the limit case
of the biaxial deformations. When the polygonal samples are loaded, they
pass through different configurations causing plastic deformations from the
beginning of the loading. In the limiting case of large deformation, they
reach a limit state where the void ratio and the stress fluctuate around con-
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stant values under subsequent deformations. This state seems to be inde-
pendent of the initial void ratio of the material, so that it can be considered
as a critical state [32]. The existence of these states has been experimen-
tally proven for clays and unbound granular soils [60] , and it has been the
basis to develop new theoretical models which are known as Critical State
Models [32].

The evolution of dense and loose samples to this critical state is shown
in Fig. 4.9. When dense granular packings are loaded, it reaches a peak
stress, and then the deviatoric stress decreases until it finally reaches a
residual stress. Initially, the material compacts, and then dilates until the
void ratio reaches a constant value that corresponds to its critical value.
If the packing has a void ratio lower than the critical value, it deforms in
such a way that there is not peak stress, and the void ratio increases until it
reaches the critical value.

4.5 Concluding remarks

In order to perform a micromechanic investigation of the strain localiza-
tion, numerical simulations on a discrete model with polygonal particles
were performed. The results are summarized as follows:

• The onset of the plastic deformations proves to be the precursor mech-
anism of the shear band formation. We observe a progressive local-
ization of plastic deformation before failure. After failure, a buckling
of force chains is observed. This buckling leads to localized dilatancy
and the onset of the shear band.

• The failure point shows a slight nonlinear dependence with the pres-
sure. Then, the friction angle and cohesive factor of the Mohr-
Coulomb analysis are not material parameters, because they depend
on the stress state.

• The angle of orientation of the shear band lies in the range predicted
by the bifurcation theories, with a tendency to be close to the corre-
sponding angle of the Mohr-Coulomb analysis.
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• The biaxial test for two extreme void ratios shows evidence for the
existence of the critical states. A future investigation of the biaxial
tests would require one to consider different initial densities in order
to evaluate these states.

• The Mohr-Coulomb criterion gives a satisfactory description of the
localized failure, but it provides an oversimplified description of the
stress-strain relation. Plastic deformation is observed from the be-
ginning of the load, ruling out an elastic regime. The dilatancy is
observed before failure. This is an important ingredient in the failure
analysis that is not taken into account in this theory.



Chapter 5

Incremental stress-strain relation

For many years the study of the mechanical behavior of soils was devel-
oped in the framework of linear elasticity [61] and the Mohr-Coulomb
failure criterion [11]. However, since the boom of the developments of
the nonlinear constitutive relations in 1968 [32], a great variety of consti-
tutive models describing different aspects of soils have been proposed [1].
A crucial question has been brought forward: What it the most appropriate
constitutive model to interpret the experimental result, or to implement a
finite element code? Or more precisely, why is the constitutive relation I
am using better than that one of the fellow next lab?

In the last years, the discrete element approach has been used as a tool to
investigate the mechanical response of soils at the grain level [37]. Several
average procedures have been proposed to define the stress [2, 46] and the
strain tensor [6, 43] in terms of the contact forces and displacements at the
individual grains. These methods have been used to perform a direct calcu-
lation of the incremental stress-strain relation of assemblies of disks [40]
and spheres [48], without any a-priori hypothesis about the constitutive
relation. Since these simple spherical geometries of the grains overesti-
mate the role of rotations in realistic soils [49], it is interesting to see the
incremental response using arbitrarily shaped particles.

In this chapter we investigate the incremental response in the quasistatic
deformation of dense assemblies of polygonal particles by averaging the
stress and strain tensors over a representative volume element of the sam-
ple. The strain envelope response is calculated in order to classify the

41
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incremental response of the discrete model. In Sec. 5.1 we present mi-
cromechanical expressions for the average of the stress and strain tensors
over a representative volume element. In Sec. 5.2 a short review of the
incremental stress-strain is presented. The basic question of the validity
incremental non-linearity of granular materials is discussed in basis of our
numerical calculations. Finally, the calculation of the strain envelope re-
sponse is presented in Sec. 5.3.

5.1 Homogenization

The aim of this section is to calculate the macromechanical quantities, the
stress and strain tensors, from micromechanical variables of the granular
assembly such as contact forces, rotations and displacements of individual
grains.

A particular feature of granular materials is that both the stress and the
deformation gradient are very concentrated in small regions around the
contacts between the grains, so that they vary strongly on short distances.
The standard homogenization procedure smears out these fluctuations by
averaging these quantities over a representative volume element (RVE).
The diameter d of the RVE must be such that δ � d � D, where δ is the
characteristic diameter of the particles and D is the characteristic length of
the continuous variables.

We use here this procedure to obtain the averages of the stress and the strain
tensors over a RVE in granular materials, which will allow us to compare
the molecular dynamics simulations to the constitutive theories. We re-
gard stress and strain to be continuously distributed through the grains, but
concentrated at the contacts. It is important to comment that this aver-
aging procedure would not be appropriate to describe the structure of the
chain forces or the shear bands because typical variation of the stress cor-
responds to few particle diameters. Different averaging procedures using
coarse-grained functions [17], or cutting the space in slide-shaped areas
[6, 62], can deal with the question of how one can perform averages, and
at the same time maintain these features.
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Figure 5.1: Representative volume element (RVE).

We will calculate the averages around a point x0 of the granular sample
taking a RVE calculated as follows: at the initial configuration, we select
the grains whose center of mass are less than d/2 from x0. Then the RVE
is taken as the volume V enclosed by the initial configuration of the grains.
See Fig. 5.1. The diameter d is taken, so that the averaged quantities are
not sensible to the increase of the diameter by one particle diameter. does
not affect the average stress more than 5%.

5.1.1 Micromechanical stress

The Cauchy stress tensor is defined using the force acting on an area el-
ement situated on or within the grains . Let f be the force applied on a
surface element a whose normal unit vector is n. Then the stress is defined
as the tensor satisfying [29]:

σkjnk = lima→0fj/a, (5.1)

where the Einstein summation convention is used. In absence of body
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forces, the equilibrium equations in every volume element lead to [61]:

∂σij/∂xi = 0. (5.2)

We are going to calculate the average of the stress tensor σ̄ over the RVE:

σ̄ =
1

V

∫

V

σdV (5.3)

Since there is no stress at the voids of the granular media, the averaged
stress can be written as the sum of integrals taken over the particles

σ̄ =
1

V

∑

α

∫

Vα

σijdV , (5.4)

where Vα is the volume of the particle α. and N is the number of particles
of the RVE. Using the identity

∂(xiσkj)

∂xk
= xi

∂σkj
∂xk

+ σij, (5.5)

Eq. (5.2), and the Gauss theorem, Eq. (5.4) leads to

σ̄ij =
1

V

∑

α

∫

Vα

∂(xiσkj)

∂xk
dV =

1

V

∑

α

∫

∂Vα

xiσkjnkda. (5.6)

The right hand side is the sum over the surface integrals of each grain. ∂Vα
represents the surface of the grain α and n is the unit vector perpendicular
to the surface element da.

An important feature of granular materials is that the stress acting on each
grain boundary is concentrated in the small regions near to the contact
points. Then we can use the definition given in Eq. (5.1) to express this
stress on particle α in terms of the contact force by introducing Dirac delta
functions:
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σkjnk =

Nα∑

β=1

fαβj δ(x− xαβ), (5.7)

where xαβ and fαβ are the position and the force at the contact β, and Nα

is the number of contacts of the particle α. Replacing Eq. (5.7) into Eq.
(5.6), we obtain

σ̄ij =
1

V

∑

αβ

xαβi f
αβ
j . (5.8)

Now we decompose xαβ = xα + `αβ where xα is the position of the center
of mass and `αβ is the branch vector, connecting the center of mass of
the particle to the point of application of the contact force. Imposing this
decomposition in Eq. (5.8), and using the equilibrium equations at each
particle

∑
β fαβ = 0 we have

σ̄ij =
1

V

∑

αβ

`αβi fαβj . (5.9)

From the equilibrium equations of the torques
∑

β(`αβi f
αβ
j − `αβj fαβi ) = 0

one obtains that this tensor is symmetric, i. e.,

σ̄ij − σ̄ji = 0. (5.10)

This property leads to some simplifications, as we will see later.

5.1.2 Micromechanical strain

In elasticity theory, the strain tensor is defined as the symmetric part of the
average of the displacement gradient with respect to the equilibrium con-
figuration of the assembly. Using the law of conservation of energy, one
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can define the stress-strain relation in this theory [61]. In granular materi-
als one cannot define the strain in this sense, because any loading involves
a certain amount of plastic deformation at the contacts, so that it is not pos-
sible to define the initial reference state to calculate the strain. Nevertheless
, one can define a strain tensor in the incremental sense. This is defined as
the average of the displacement tensor taken from the deformation during
the transition between two different stress states.

At the micromechanical level, the deformation of the granular materials is
given by a displacement field u = r′−r at each point of the assembly. Here
r and r′ are the positions of a material point before and after deformation.
The average of the strain and rotational tensors are defined as:

ε̄ =
1

2
(F + F T ), (5.11)

ω̄ =
1

2
(F − F T ), (5.12)

where F T is the transpose of the deformation gradient F , which is defined
as

Fij =
1

V

∫

V

∂ui
∂xj

dV . (5.13)

Using the Gauss theorem, we transform it into an integral over the surface
of the RVE

Fij =
1

V

∫

∂V

uinjda, (5.14)

where ∂V is the boundary of the volume element. We express this as the
sum over the boundary particles of the RVE

Fi,j =
1

V

∑

α

∫

∂Vα

uinjda, (5.15)
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whereNb is the number of boundary particles. To go further it is convenient
to make some approximations. First, the displacements of the grains during
deformation can be considered rigid except for the small deformations near
to the contact that can be neglected. Then, if the displacements are small
in comparison to the size of the particles, we can write the displacement of
the material points inside of particle α as:

ui(x) ≈ ∆xαi + eijk∆φ
α
j (xk − xαk ), (5.16)

where ∆xα, ∆φα and xα are displacement, rotation and center of mass
of the particle α which contains the material point x, and eijk is the anti-
symmetric unit tensor. Setting a parameterization for each surface of the
boundary grains over the RVE, the deformation gradient can be explicitly
calculated in terms of grain rotations and displacements by replacing Eq.
(5.16) in Eq. (5.15).

In the particular case of a two-dimensional assembly of polygons, the
boundary of the RVE is given by a graph {x1..x2, ...,xNb+1 = x1} con-
sisting of all the edges belonging to the external contour of the RVE, as
shown in Fig. 5.1. In this case, Eq. (5.15) can be transformed as a sum of
integrals over the segments of this contour.

Fij =
1

V

Nb∑

β=1

∫ xβ+1

xβ

[∆xβi + eik∆φ
β(xk − xβk)]nβj ds, (5.17)

where eik ≡ ei3k and the unit vector nβ is perpendicular to the segment−−−−→
xβxβ+1. Here β is the index of this boundary segment; and ∆xβ, ∆φβ and
xβ displacement, rotation and center of mass of the particle which contains
this segment. Finally, by using the parameterization x = xβ+s(xβ+1−xβ),
where (0 < s < 1), we can integrate Eq. (5.17) to obtain

Fij =
1

V

∑

β

(∆xαi + eik∆φ
α`βk)Nβ

j , (5.18)
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where Nβ
j = ej,k(x

β+1
k − xβk) and ` = (xβ+1 − xβ)/2 − xα. The stress

tensor can be calculated taking the symmetric part of this tensor using Eq.
(5.11). Contrary to the strain tensor calculated for spherical particles [4],
the individual rotation of the particles appears in the calculation of this
tensor. This is given by the fact that for non-spherical particles the branch
vector is not perpendicular to the contact normal vector, so that eik`

β
kN

β
j 6=

0.

5.2 Incremental theory

Since the stress and the strain tensor are symmetric, it is advantageous
to simplify the notation by defining these quantities as six-dimensional
vectors:

σ̃ =




σ11

σ22

σ33√
2σ23√
2σ31√
2σ13



, and ε̃ =




ε11

ε22

ε33√
2ε23√
2ε31√
2ε13




(5.19)

The coefficient
√

2 allows us to preserve the metric in this transformation:
σ̃kσ̃k = σ̄ijσ̄ij . The relation between these two vectors will be established
in the general context of the rate independent incremental constitutive re-
lations. We will focus on two particular theoretical developments: the
hypoplastic theory and the elasto-plastic models. The similarities and dif-
ferences of both formulations are presented in the framework of the incre-
mental theory as follows.

5.2.1 General framework

In principle, the mechanical response of soils can be described by a
functional dependence of the stress σ̃(t) at time t on the strain history
{ε̃(t′)}0<t′<t. However, the mathematical description of this dependence
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turns out to be very complicated due to the non-linearity and irreversible
behavior of these materials. An incremental relation, relating the incre-
mental stress dσ̃(t) = σ′(t)dt to the incremental strain dε̃(t) = ε′(t)dt and
some internal variables χ accounting for the deformation history, enables
us to avoid these mathematical difficulties [15]. This incremental scheme
is also useful to solve geotechnical problems, since the finite element codes
require that the constitutive relation be expressed incrementally.

Due to the large number of existing incremental relations, the necessity of a
unified theoretical framework has been pointed out as an essential necessity
to classify all the existing models [63]. In general, the incremental stress
is related to the incremental strain by the following function:

Fχ(dε̃, dσ̃, dt). (5.20)

Let’s look at the special case where there is no rate dependence in the
constitutive relation. This means that this relation is not influenced by the
time required during any loading tests, as corresponds to the quasi-static
approximation. In this caseF is invariant with respect to dt, and Eq. (5.20)
can be reduced to:

dε̃ = Gχ(dσ̃). (5.21)

In particular, the rate-independent condition implies that multiplying the
loading time by a scalar λ does not affect the incremental stress-strain re-
lation:

∀λ, Gχ(λdσ̃) = λGχ(dσ̃). (5.22)

This equation means that Gχ is an homogeneous function of degree one. In
this case, the application of the Euler identity shows that Eq. (5.21) leads
to

dε̃ = Mχ(σ̂)dσ̃, (5.23)
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where Mχ = ∂Gχ/∂(dσ̃) and σ̂ is the unitary vector defining the direction
of the incremental stress

σ̂ =
dσ̃

|dσ̃| . (5.24)

Eq. (5.23) represents the general expression for the rate-independent con-
stitutive relation. In order to determine the dependence of M on σ̂, one
can either perform experiments by taking different loading directions, or
postulate explicit expressions based on a theoretical framework. The first
approach will be considered in the next section, and the discussion about
some existing theoretical models will be presented as follows.

5.2.2 Drucker-Prager models

The classical theory of elasto-plasticity has been established by Drucker
and Prager in the context if metal plasticity [64]. Some extensions have
been developed to describe soils, clays, rocks, concrete, etc. [11, 65]. Here,
we present a short review of these developments in soil mechanics.

When a granular sample subjected to a confining pressure is loaded in the
axial direction, it displays a typical stress-strain response as shown in the
left part of Fig. 5.2. A continuous decrease of the stiffness (i.e. the slope
of the stress-strain curve) is observed during loading. If the sample is
unloaded, an abrupt increase in the stiffness is observed, leaving an irre-
versible deformation. One observes that if the stress is changed around
some region below σA, which is called the yield point, the deformation is
almost linear and reversible. The first postulate of the elasto-plastic theory
establishes a stress region immediately below the yield point where only
elastic deformations are possible.

Postulate 1: For each stage of loading there exists a finite region in the
stress space where only reversible deformations are possible.

The simple Mohr-Coulomb model assumes a large elastic domain, so that
the onset of plastic deformation occurs only at failure [11]. However, it
has been experimentally shown that plastic deformation develops before
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Figure 5.2: Evolution of the elastic regime a) stress-strain relation b) stress space.

failure [66]. In order to provide a consistent description of these experi-
mental results with the elasto-plastic theory, it is necessary to suppose that
the elastic domain changes with the deformation process [31]. This con-
dition is schematically shown in Fig. 5.2. Let suppose that the sample
is loaded until it reaches the stress σA and then it is slightly unloaded. If
the sample is reloaded, it is able to recover the same stress-strain relation
of the monotonic loading once it reaches the yield point σA again. If one
increases the load to the stress σB, a new elastic response can be observed
after a loading reversal. In the elasto-plasticity context, this result is in-
terpreted by supposing that the elastic regime is expanded to a new stress
region below the yield point σB.

Postulate 2: The elastic domain remains when the deformations take
place inside it, and it changes as the plastic deformation evolves.

The transition from the elastic to the elasto-plastic response is extrapolated
for more general deformations. Part (b) of Fig. 5.2 shows the evolution of
the elastic region when the yield point moves in the stress space from σA

to σB. The essential goal in the elasto-plastic theory is to find the correct
description of the evolution of the elastic regime with the deformation,
which is called the hardening law.

We will finally introduce the third basic assumption from elasto-plasticity
theory:
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Postulate 3: The strain can be separated in an elastic (recoverable)
and a plastic (unrecoverable) component:

dε̃ = dε̃e + dε̃p, (5.25)

The incremental elastic strain is linked to the incremental stress by intro-
ducing an elastic tensor as

dσ̄ = D(σ̃)dε̃e. (5.26)

To calculate the incremental plastic strain, we introduce a so-called yield
surface, which encloses the elastic domain, as

f(σ, κ) = 0, (5.27)

where κ is introduced as an internal variable, which describes the evolution
of the elastic regime with the deformation. From experimental evidence, it
has been shown that this variable can be taken as a function of the cumu-
lative plastic strain [11, 65]

εp ≡
∫ t

0

√
dεkdεkdt. (5.28)

When the stress state reaches the yield surface, the plastic deformation
evolves. This is assumed to be derived from a scalar function of the stress
as follows:

dεpj = Λ
∂g

∂σj
, (5.29)

where g is the so-called plastic potential function. following the Drucker-
Prager postulates it can be shown that g = f [64]. However, a considerable
amount of experimental evidence has shown that in soils the plastic defor-
mation is not perpendicular to the yield surfaces [67]. It is necessary to
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introduce this plastic potential to extend the Drucker-Prager models to the
so-called non-associated models.

The parameter λ of Eq. (5.29) can be obtained from the so-called con-
sistence condition. This condition comes from the second postulate,
which establishes that after the movement of the stress state from σ̃A to
σ̃B = σ̃A + d̃σ the elastic regime must be expanded so that df = 0, as
shown in Part (b) of Fig. 5.2. Using the chain rule one obtains:

df =
∂f

∂σi
dσi +

∂f

∂κ

∂κ

∂εpj
dεpj = 0. (5.30)

Replacing Eq. (5.29) in Eq. (5.30), we obtain the parameter Λ

Λ = −(
∂f

∂κ

∂κ

∂εpj

∂g

∂σj
)−1 ∂f

∂σi
dσi. (5.31)

We define the vectors N y
i = ∂f/∂σi and N f

i = ∂g/∂σi and the unit vec-
tors φ̂ = Ny/|Ny| and ψ̂ = Nf/|Nf | as the flow direction and the yield
direction. The meaning of these vectors is explained below. In addition,
the plastic modulus is defined as

h = − 1

|Ny||Nf |
∂f

∂κ

∂κ

∂εpj

∂g

∂σj
. (5.32)

Replacing Eq. (5.31) in Eq. (5.29) and using Eq. (5.32) we obtain:

dε̃p =
1

h
φ̂ · dσ̃ ψ̂. (5.33)

Note that this equation has been calculated for the case that the stress incre-
ment goes outside of the yield surface. If the stress increment takes place
inside the yield surface, the second Drucker-Prager postulate establishes
that dε̃p = 0. Thus, the generalization of Eq. (5.33) is given by
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dε̃p =
1

h
〈φ̂ · dσ̃〉 ψ̂, (5.34)

where 〈x〉 = x when x > 0 and 〈x〉 = 0 otherwise. This equation estab-
lishes a plastic deformation when the incremental stress has a component
collinear with the yield direction, and an incremental plastic strain which
points always to the flow direction. Finally, the total strain response can be
obtained from Eqs. (5.25) and (5.34):

dε = D−1(σ)dσ +
1

h
〈φ̂ · dσ̃〉 ψ̂. (5.35)

From this equation one can distinguish two zones in the incremental stress
space where the incremental relation is linear. They are the so-called ten-
sorial zones defined by Darve [15]. The existence of two tensorial zones,
and the continuous transition of the incremental response at their boundary,
are essential features of the elasto-plastic models.

Although the elasto-plastic theory has shown to work well for monotoni-
cally increasing loading, it has shown some deficiencies in the description
of complex loading histories [68]. There is also an extensive body of ex-
perimental evidence that shows that the elastic regime is extremely small
and that the transition from elastic to an elasto-plastic response is rather
smooth.

The concept of bounding surface has been introduced to generalize the
classical elasto-plastic concepts [69]. In this model, for any given state
within the surface, a proper mapping rule associates a corresponding image
stress point on this surface. A measure of the distance between the actual
and the image stress points is used to specify the plastic modulus in terms
of a plastic modulus at the image stress state. Besides the versatility of this
theory to describe a wide range of materials, it has the advantage that the
elastic regime can be considered as vanishingly small, and therefore used
to give a realistic description of unbound granular soils.

It is the author’s opinion that the most striking aspect of the bounding
surface theory with vanishing elastic range is that it establishes a con-
vergence point for two different approaches of constitutive modeling: the



Incremental stress-strain relation 55

elasto-plastic approaches originated from the Drucker-Prager theory, and
the more recently developed hypoplastic theories.

5.2.3 Hypoplastic models

In recent years, an alternative approach for modeling soil behavior has been
proposed, which departs from the framework of the elasto-plastic theory
[16, 24, 70]. The distinctive features of this approach are:

• The absence of the decomposition of strain in plastic and elastic
components.

• The statement of a nonlinear dependence of the incremental re-
sponse with the strain rate directions.

The most general expression has been provided by the so-called second
order incremental non-linear models [24]. A particular class of these
models which has received special attention in recent times is provided
by the theory of hypoplasticity [16, 70]. A general outline of this theory
was laid down by Kolymbas [16], leading to different formulations, such
as the K-hypoplasticity developed in Karlsruhe [71, 72], and the CLoE-
hypoplasticity originated in Grenoble [70]. In the hypoplasticity, the gen-
eral constitutive equation takes the following form:

dσ̃ = L(σ̃, v)dε̃+ Ñ(σ̃, v)|dε̃|. (5.36)

Where L is a second order tensor and Ñ is a vector, both depending on the
current state of the material, the stress σ̃ and the void ratio v. Hypoplas-
tic equations provide a simplified description of loose and dense unbound
granular materials. A reduced number of parameters are introduced, which
are very easy to calibrate [36].

In the theory of hypoplasticity, the stress-strain relation is established by
means of an incremental nonlinear relation without any recourse to yield
or boundary surfaces. This nonlinearity is reflected in the fact that the
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Figure 5.3: Smooth and stairlike stress paths and corresponding strain responses

relation between the incremental stress and the incremental strain given
in Eq. (5.36) is always nonlinear. The incremental nonlinearity of the
granular materials is still under discussion. Indeed, an important feature of
the incremental nonlinear constitutive models is that they break away from
the superposition principle:

dσ̃(dε̃1 + dε̃2) 6= dσ̃(dε̃1) + dσ̃(dε̃2), (5.37)

which is equivalent to:

dε̃(dσ̃1 + dσ̃2) 6= dε̃(dσ̃1) + dε̃(dσ̃2) (5.38)

An important consequence of this feature is addressed by Kolymbas [73]
and Darve [24]. They consider two stress paths; the first one is smooth
(proportional loading) and the second one results from the superposition
of small deviations as shown in Fig. 5.3. The superposition principle
establishes that the strain response of the stairlike path converges to the
response of the proportional loading in the limit of arbitrarily small devi-
ations. More precisely, the strain deviations ∆ε and the steps of the stress
increments ∆σ satisfy lim∆σ→0 ∆ε = 0. For the hypoplastic equations,
and in general for the incremental nonlinear models, this condition is never
satisfied. For incremental relations with tensorial zones, this principle is
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satisfied whenever the increments take place inside one of these tensorial
zones. It should be added that there is no experimental evidence disproving
or confirming this rather questionable superposition principle.

In order to explore the validity of the superposition principle some nu-
merical simulations were performed. Five different polygonal assemblies
of 400 particles were used in the calculations. The stress was controlled in
the RVE by applying a force f β = −(p+q)∆xβ2 x̂1 +(p−q)∆xβ1 x̂2 on each
selected segment Tβ = ∆xβ1 x̂1 + ∆xβ2x̂2 of the external contour of the
assembly, where x̂1 and x̂2 are the unit vectors of the Cartesian coordinate
system. The initial void ratio is around ν = 0.15.

The components of the stress are reduced by p = (σ1 + σ2)/2 and
q = (σ1 − σ2)/2, where σ1 and σ2 are the eigenvalues of the stress tensor.
Equivalently, the coordinates of the strain are given by the sum γ = ε1 + ε2
and the difference e = ε1 − ε2 of the eigenvalues of the strain tensor. We
use the convention that e > 0 means compression of the sample.

The part (a) of Fig. 5.4 shows the loading path during the proportional
loading under constant lateral pressure. This path is also decomposed
into pieces divided into two parts: one is an incremental isotropic loading
(∆p = ∆σ and ∆q = 0), the other is an incremental pure shear load-
ing (∆q = ∆σ and ∆p = 0). The length of the steps ∆σ varies from to
0.4p0 to 0.001p0, where p0 = 640kPa. The part (b) of Fig. 5.4 shows
that as the steps decrease, the strain response converges to the response of
the proportional loading. In order to verify this convergence, we calculate
the difference between the strain response of the stairlike path γ(e) and the
proportional loading path γ0(e) as:

∆ε = max
e
|γ(e)− γ0(e)|, (5.39)

for different steps sizes. This is shown in Fig. 5.5 for seven different
polygonal assemblies. The linear interpolation of this data intersects the
vertical axis at 3 × 10−7. Since this value is below the error given by the
quasistatic approximation, which is 3.13 × 10−4, the results suggest that
the responses converge to that one of the proportional load. Therefore we
find that within our error bars the superposition principle is valid.
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Figure 5.4: Comparison between strain responses obtained from MD simulations of a
rectilinear proportional loading (with constant lateral pressure) and stairlike paths.
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A close inspection of the incremental response will show that the validity
of the superposition principle is linked to the existence of tensorial zones in
the incremental stress space. Before this, a short introduction to the strain
envelope responses follows.

5.3 Incremental response

A graphical illustration of the particular features of the constitutive models
can be given by employing the so-called response envelopes. They were
introduced by Gudehus [63] as a useful tool to visualize the properties of
a given incremental constitutive equation. A strain envelope response is
defined as the image {dε̃ = G(dσ̃, σ̃)} in the strain space of the unit sphere
in the stress space, which becomes a potatolike surface in the stress space.

In practice, the determination of the strain envelope responses is difficult
because it requires one to prepare many samples with identical material
properties. Numerical simulations result as an alternative to the solution of
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Figure 5.6: Numerical calculation of the incremental strain response. The dots are the
numerical results. The solid curve represents the fit to the elasto-plastic theory. The
dashed curve is the hypoplastic fit.

this problem. They allow one to create clones of the same sample, and to
perform different loading histories in each one of them.

In recent years different discrete element methods have been used to calcu-
late strain envelope responses. Disks [40] and spheres [47, 48] have been
used in this calculation. Some of the results lead to the conclusion that
the non-associated theory of elasto-plasticity is sufficient to describe the
observed incremental behavior [40]. However, some recent investigations
using three-dimensional loading paths of complex loading histories seem
to contradict these results [48, 49].

In the case of a plane strain tests, where there is no deformation in one
of the spatial directions, the strain envelope response can be represented
in a plane. According to Eq. (5.36), This response results in a rotated,
translated ellipse in the hypoplastic theory, whereas it is given by a contin-
uous curve consisting of two pieces of ellipses in the elasto-plastic theory,
as result from Eq. (5.35). It is then of obvious interest to compare these
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predictions with the stress envelope response of the experimental tests.

Fig. 5.6 shows the typical strain response resulting from the different stress
controlled loading in a dense packing of polygons. Each point is obtained
from the strain response in a specific direction of the stress space, with the
same stress amplitude of 10−4p0. We take q0 = 0.45p0 and p0 = 160kPa
In this calculation. The best fit of these results with the envelopes response
of the elasto-plasticity (two pieces of ellipses) and the hypoplasticity (one
ellipse) is also shown in Fig. 5.6.

From these results we conclude that the elasto-plastic theory is more ac-
curate in describing the incremental response of our model. One can draw
to the same conclusion taking different initial stress values [21]. These re-
sults have shown that the incremental response can be accurately described
using the elasto-plastic relation of Eq. (5.35). The validity of this equation
is supported by the existence of a well defined flow rule for each stress
state.

5.4 Concluding remarks

In this chapter we have obtained explicit expressions for the averaged stress
and strain tensors over a RVE, in terms of the micromechanical variables,
contact forces and the individual displacements and rotations of the grains.

The stress-strain relation on the RVE has been investigated by performing
strain increments taking different directions in the stress space. The result-
ing incremental response has been compared to the elasto-plastic theory
and the hypoplastic models. We found that the elasto-plastic theory, with
two tensorial zones, provided a more accurate description of the incremen-
tal response than the hypoplastic theory.

Finally the principle of superposition has been investigated, with the aim
to validate the existence of the tensorial zones of the incremental response.
In contradiction to the incremental nonlinear models, the simulation results
show that this principle is accurately satisfied.

In the next chapter we will separate the incremental response in an elastic
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and a plastic contribution. We will see that a linear incremental elastic
response and a simple flow rule of plasticity gives a satisfactory description
of the mechanical behavior of this model.



Chapter 6

Analysis of the elasto-plastic response

In the previous chapter we showed that the stress envelope response of the
polygonal packings fits better to the elasto-plastic models than the incre-
mental non-linear models. We will see that from the calculation of the
strain envelopes for different initial stress states, one can obtain the incre-
mental response without establishing an elasto-plastic model a priori.

In this chapter we calculate the elasto-plastic response of a dense packing
of polygons. From the analysis of the incremental response, we will show
that the principal features of the deformation of soils can be reproduced by
this simple model. In particular, the anisotropy of the stiffness tensor, the
non-associated plastic flow rule, and the existence of failure modes inside
the plastic limit surface will be discussed in the framework of the elasto-
plastic theory. We will also discuss the relation of the constitutive models
with the micromechanical arrangements, such as open and sliding contacts.

6.1 Introduction

6.2 Calculation of the incremental response

The elasto-plastic response of a perfect packing of polygons is calculated
here by using molecular dynamics simulations. The stress is controlled
from the boundary of assembles of 10 × 10 particles using the floppy

63
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boundary method from Sec. 3.3. The response of the assembly is in-
vestigated by defining the incremental stress and strain vector in a RVE
of radius 8 particles from the center of the assembly. This calculation is
performed in order to exclude the boundary effects from the calculations.

6.2.1 Basic assumptions

The micromechanical expression of the stress tensor is given by Eq. (5.9).
Due to the symmetry of this tensor, their principal eigenvalues are real.
From the principal components σ1 and σ2 of the stress tensor, one can
define the stress vector:

σ̃ =

[
p
q

]
=

1

2

[
σ1 + σ2

σ1 − σ2

]
, (6.1)

where p and q are the pressure and the deviatoric stress. The domain of
admissible stresses is bounded by the failure surface. When the system
reaches this surface, it becomes unstable and fails.

Before failure, the constitutive behavior can be obtained by performing
small changes in the stress and evaluating the deformation response. An
infinitesimal change of the stress vector dσ̃ produces an infinitesimal de-
formation of the RVE, which can be described by the incremental strain
tensor. In Subsect. 5.1.2 this tensor was calculated from the average of the
displacement gradient over the area of the RVE. It has been shown that it
can be transformed in a sum over the boundary of the RVE.

dεij =
1

2A

∑

b

(∆ubiN
b
j + ∆ubjN

b
i ). (6.2)

Here ∆ub is the displacement of the boundary segment, that is calculated
from the linear displacement ∆x and the angular rotation ∆φ of the poly-
gons belonging to it, according to Eq. (5.16). From the principal eigen-
values dε1 and dε2 of the symmetric part of this tensor, one can define the
incremental strain vector as:
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dε̃ =

[
de

dγ

]
= −

[
dε1 + dε2
dε1 − dε2

]
. (6.3)

By convention de > 0 corresponds to a compression of the sample. We
are going to assume a rate-independent constitutive relation between the
incremental stress and incremental strain tensor. According to Sec. 5.2,
this can generally be written as:

dε̃ = M(θ̂, σ̃)dσ̃, (6.4)

where θ̂ is the unitary vector defining a specific direction in the stress
space:

θ̂ =
dσ̃

|dσ̃| ≡
[

cos θ

sin θ

]
, |dσ̃| =

√
dp2 + dq2. (6.5)

The constitutive relation results from the calculation of dε̃(θ), where each
value of θ is related to a particular mode of loading. Some special modes
are listed in Table 6.2.1.

In order to compare the resulting incremental response to the elasto-plastic
theory, it is necessary to assume that the incremental strain can be separated
into an elastic (recoverable) and a plastic (unrecoverable) component:

dε̃ = dε̃e + dε̃p, (6.6)

0◦ isotropic compression dp > 0 dq = 0
45◦ axial loading dσ1 > 0 dσ2 = 0
90◦ pure shear dp = 0 dq > 0

135◦ lateral loading dσ1 = 0 dσ2 > 0
180◦ isotropic expansion dp < 0 dq = 0
225◦ axial stretching dσ1 < 0 dσ2 = 0
270◦ pure shear dp = 0 dq < 0
315◦ lateral stretching dσ1 = 0 dσ2 < 0

Table 6.1: Principal modes of loading according to the orientation of θ̂
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dε̃e = D−1(σ̃)dσ̃, (6.7)

dε̃p = J(θ, σ̃)dσ̃. (6.8)

Here, D−1 is the inverse of the stiffness tensor D, and J = M − D−1

the flow rule of plasticity, which results from the calculation of dε̃e(θ) and
dε̃p(θ).

6.2.2 The method

The method presented here to calculate the strain response has been used
on experimental tests on sand [67]. It was introduced by Bardet [40] in the
calculation of the incremental response using discrete element methods.
This method will be used to determine the elastic dε̃e and plastic dε̃p com-
ponents of the strain as function of the stress state σ̃ and the stress direction
θ̂. Fig. 6.1 shows the three steps of the procedure:

1) The sample is driven to the stress state σ̃. First, it is isotropically com-
pressed until it reaches the stress value σ1 = σ2 = p − q. Next, it is
subjected to axial loading in order to increase the axial stress σ1 to p + q.
When the stress state with pressure p and deviatoric stress q is reached, the
sample is allowed to relax.

2) Loading the sample from σ̃ to σ̃+dσ̃, the strain increment dε̃ is obtained.
This procedure is implemented on different clones of the same sample,
choosing different stress directions in each one of them, according to Eq.
(6.5).

3) The samples are unloaded until the original stress state σ̃ is reached.
Then one finds a remaining strain dε̃p that corresponds to the plastic com-
ponent of the incremental strain.

The modulus of the stress increments is fixed to |dσ̃| = 10−4p0, where p0 =
160kPa. This increments is chosen small enough, so that the unloaded
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Figure 6.1: Procedure to obtain the constitutive behavior: 1) The sample is driven to the
stress state σ̃, with pressure p and deviatoric stress q. 2) It is loaded from σ̃ to σ̃ + dσ̃. 3)
It is unloaded to the original stress state σ̃.

stress-strain path is approximately elastic. Thus, the difference dε̃e = dε̃−
dε̃p can be taken the elastic component of the strain.

This method is based on the assumption that the strain response after a re-
versal loading is completely elastic. However, numerical simulations have
shown that this assumption is not strictly true, because sliding contacts are
always observed during the unload path [27, 47]. In order to overcome this
difficulty, Calvetti et al. [47] calculate the elastic part by removing the
frictional condition from the algorithm setting µ = ∞, and measuring the
purely elastic response ε̃ns of the assembly. Then the plastic component of
the strain can be calculated as dε̃p = dε̃− dε̃ns.

In our simulation, we have observed that the plastic deformation during
the reversal path is less than 1% of the corresponding value of the elas-
tic response. Within this margin of error, the method proposed by Bardet
can be taken as a reasonable approximation to describe the elasto-plastic
response. It is worth mentioning that the plastic deformation after the load-
ing reversal will result in a permanent accumulation of deformation when
the sample is subjected to cyclic loading [27]. This topic will be discussed
in Chapter 7.
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Fig. 6.2 shows the load-unload stress paths and the corresponding strain
response when an initial stress state with σ1 = 200kPa and σ2 = 120kPa
is chosen. The end of the load paths in the stress space maps into a strain
envelope response dε̃(θ) in the strain space. Likewise, the end of the unload
paths maps into a plastic envelope response dε̃p(θ). The yield direction
φ can be found from this response, as the direction in the stress space
where the plastic response is maximal. In this example, this is around
θ = 87.2◦. The flow direction ψ is given by the direction of the maximal
plastic response in the strain space, which is around to 76.7◦. The fact
that these directions do not agree reflects a non-associated flow rule, as
it is observed in experiments on realistic soils [67]. We will explore this
feature in the next section.

6.3 Constitutive relation

In this section, the elastic and plastic response envelopes are evaluated for
different stress levels. The incremental stress-strain relation is calculated
from the average of the envelope response over five different samples, each
one with 10×10 particles. From the resulting incremental response, we ex-
amine the principal elements of the elasto-plastic theory: the elastic tensor,
flow rule, failure surface, and the plastic limit surface.

6.3.1 Failure surface

The failure line was calculated by looking for the values of stress for which
the system becomes unstable. For each pressure p, there is a critical devi-
atoric stress qc(p), below which the sample reaches a stable state with an
exponential decay of its kinetic energy after the load is applied. For devia-
toric stress values above the critical one, the sample becomes instable and
fails. Fig. 6.3 shows the interface between these two stress states, which
can be accurately fitted by the power law:

q

qc
=

(
p

p0

)β
. (6.9)
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Figure 6.3: Failure limit. The continuous line represents the power law fit.

Here p0 = 1.0MPa is the reference pressure, and qc = 0.78± 0.03MPa.
The power law dependence on the pressure, with exponent β = 0.92 ±
0.02 implies a slight deviation from the Mohr-Coulomb theory. Empirical
criteria of failure for most rocks [30] and soils [12] show a power law
dependence of the form of Eq. (6.9).

6.3.2 Elastic tensor

Hooke’s law of elasticity states that the stiffness tensor of isotropic materi-
als can be written in terms of two material parameters, i.e. the Young mod-
ulus E and the Poisson ratio ν [61]. However, the isotropy is not fulfilled
when the sample is subjected to deviatoric loading. Indeed, numerical sim-
ulations [2, 5] and photo-elastic experiments [74, 75] on granular materials
show that the loading induces a significant deviation from isotropy in the
contact network.
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Anisotropy of the contact network

The anisotropy of the granular sample can be characterized by the distri-
bution of the orientations of the branch vectors `, as shown in Fig. 6.4,
each branch vector connects the center of mass of the polygon to the cen-
ter of application of the contact force. Fig. 6.4 shows the branch vectors
for two different stages of loading. The structural changes of microcon-
tacts are principally due to the opening of contacts whose branch vectors
are nearly aligned around the direction perpendicular to the load. Let us
call Ω(ϕ)∆ϕ the number of contacts per particle whose branch vector is
oriented between the angles ϕ and ϕ+ ∆ϕ. The anisotropy of the contact
distribution can be accurately described by a truncated series expansion.

Ω(ϕ) ≈ N0

2π

[
a0 + a1 cos(2ϕ) + a2 cos(4ϕ)

]
. (6.10)

Here N = N0a0 is the average coordination number of the polygons,
whose initial value N0 = 6 reduces as the load is increased. The pa-
rameters a0, a1 and a2 can be related respectively to the zero, second and
fourth order fabric tensor defined in other works to characterize the contact
distribution [5, 6, 76]. Here, they will be called fabric coefficients. The de-
pendence of the fabric coefficients on the stress ratio q/p is shown in Fig.
6.5. We observe that for stress states satisfying q < 0.4p there are almost
no open contacts. Above this limit a significant number of contacts are
open, leading to an anisotropy in the contact network. Fourth order terms
in the Fourier expansion are necessary in order to accurately describe this
distribution.

Anisotropic stiffness

We will investigate the effect of the anisotropy of the contact network on
the stiffness of the material. The most general linear relation between the
incremental stress and the incremental elastic strain for anisotropic mate-
rials is given by

dσij = Dijkldε
e
kl (6.11)
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Figure 6.4: Distribution of branch vectors for σ1 = σ2 = 160kPa (left) and σ1 = 272kPa
and σ2 = 48kPa (right). The orientational distribution of branch vectors is shown for both
cases.
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where Dijkl is the stiffness tensor [61]. Since the stress and the strain are
symmetric tensors, one can reduce their number of components from 9 to
6, and the number of components of the stiffness tensor from 81 to 36.
Further, by transposing Eq. (6.11) one obtains that Dijkl = Djilk, which
reduces the constants from 36 to 21. In the particular case of isotropic
materials, it has been shown that the number of constants can be reduced
to 2 [61]:

dεeij =
1

E
[(1− ν)dσij − νδijdσkk]. (6.12)

Here E is the Young modulus and ν the Poisson ratio. The description
of the general case of the anisotropic elasticity with 21 constants does not
seem trivial. However, since we consider here only plane strain deforma-
tions, we can perform further simplifications. We take a coordinate system
oriented in the principal stress-strain directions. Thus, the only nonzero
components are dσ11 ≡ dσ1 and dσ22 ≡ dσ2 for the stress and dε11 ≡ dσ1

and dε22 ≡ dσ2 for the strain. The anisotropic elastic tensor connecting
these components contains only three independent parameters. We can
write Eq. (6.11) as

[
dεe1
dεe2

]
=

1

E

[
1− α −ν
−ν 1 + α

] [
dσ1

dσ2

]
. (6.13)

The additional parameter α is included here to take into account the
anisotropy. When α = 0, we recover the Hooke’s law of Eq. (6.12).
Eq. (6.7) is calculated from Eq. (6.13) by performing the transformation
in the coordinates of the volumetric strain de = dε1 + dε2 and deviatoric
strain dγ = dε1 + dε2, and the pressure p = (σ1 + σ2)/2 and the deviatoric
stress q = (σ1 − σ2)/2. One obtains:

[
de
dγ

]
=

2

E

[
1− ν −α
−α 1 + ν

] [
dp
dq

]
(6.14)

In the isotropic case α = 0 this matrix is diagonal. The inverse of the
diagonal terms are the bulk modulus K = E/2(1− ν) and the shear mod-
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Figure 6.6: Elastic strain envelope responses dε̃e(θ). They are calculated for a pressure
p = 160KPa and taking deviatoric stresses with q = 0.0p (inner), 0.1p, ...,0.7p (outer).

ulus G = E/2(1 + ν). The anisotropy α 6= 0 couples the compression
mode with the shear deformation such that the compression of the sample
will produce deviatoric deformation. This coupling can be observed from
the inspection of the elastic part of the strain envelope responses dε̃e(θ) as
shown in Fig. 6.6. For stress values such as q/p ≤ 0.4 the stress envelope
responses collapse on to the same ellipse. This response can be described
by Eq. (6.14) taking α = 0. For stress values satisfying q/p > 0.4 there
is a coupling between compression and shear deformations and it is neces-
sary to take α 6= 0 in Eq. (6.14).

Stiffness & Fabric

Comparing the calculation of the elastic response in Fig. 6.6 to the
anisotropy of the contact network shown in Fig. 6.5, a certain correla-
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(6.22).

tion is evident between the stiffness tensor and the fabric coefficients of
Eq. (6.10). We observe that Hooke’s law is valid in the regime q/p < 0.4

where the contact network is isotropic. Moreover, we observe that the
opening of the contacts, whose branch vectors are almost perpendicular
to the direction of the load, produces a reduction of the stiffness in this
direction. This results in an anisotropic elasticity.

We are going to find a simple relation between the orientational distribution
of the contacts and the parameters of the stiffness. These three parameters
are calculated from the elastic response by the introduction of the quadratic
form of D−1:

R(θ) =
dp dee + dq dγe

dp2 + dq2
. (6.15)

This function can be directly obtained from the elastic part of the strain
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envelope response dε̃e(θ). On the other hand, replacing Eq. (6.14) in Eq.
(6.15) one can express R in terms of the parameters of the stiffness tensor:

R(θ) =
2

E

[
1− ν cos(2θ)− α sin(2θ)

]
. (6.16)

Using this equation, the parameters E, ν and α are evaluated from the
Fourier coefficients of R:

1

E
=

1

4π

∫ 2π

0

R(θ)dθ, (6.17)

ν = − E
2π

∫ 2π

0

R(θ) cos(2θ)dθ, (6.18)

α = − E
2π

∫ 2π

0

R(θ) sin(2θ)dθ. (6.19)
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Figs. 6.7, 6.8 and 6.9 show the results of the calculation of the Young mod-
ulus E, the Poisson ratio ν and the anisotropy factor α. Below the limit of
isotropy, Hooke’s law can be applied: E ≈ E0, ν ≈ ν0 and α ≈ 0. On the
other hand, above the limit of isotropy a reduction of the Young modulus is
found, along with an increase of the Poisson ratio and the anisotropy fac-
tor. In order to evaluate the dependence of these parameters on the fabric
coefficients ai of Eq. (6.10), we introduce an internal variable measuring
the degree of anisotropy. This variable is denoted by a and is defined as
the percentage change of the total number of contacts.

a =
N0 −N
N

≈ 1− a0 (6.20)

where a0 is defined in Eq. (6.10). The dependence of the parameters of the
stiffness tensor on the internal variable a is evaluated by developing the
Taylor series around a = 0:
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E(a) = E(0) + E ′(0)a+ O
(
a2
)
,

α(a) = α(0) + α′(0)a+ O
(
a2
)
, (6.21)

ν(a) = ν(0) + ν ′(0)a+ ν ′′(0)a2 +O
(
a3
)
.

The coefficients of these expansions are calculated from the best fit of those
expresions. Figs. 6.7 and 6.9 show that the linear approximation is good
enough to reproduce the Young modulus and the anisotropy factor. The fit
of the Poisson ratio, is shown in Fig. 6.8. Fitting with only one internal
variable requires the inclusion of a quadratic approximation. To obtain
more accurate relations, it may be necessary to introduce a more complex
dependence with the fabric coefficients of Eq. (6.10).

6.3.3 Plastic deformations

In the elasto-plastic models of soils the plastic deformation is calculated
by introducing a certain number of hypothetical surfaces [32, 65, 66, 77].
In the Drucker-Prager models, the so-called plastic flow rule is calculated
from the yield surface and the plastic potential [32, 65, 66]. In the bounding
surface plasticity, it is calculated from the loading surface and bounding
surfaces [69, 77]. We will see that it is possible to calculate the relevant
parameters of the flow rule of plasticity directly from the stress envelope
response dε̃p(θ) without introducing such abstract surfaces.

Flow rule

In Fig. 6.2 we found that the plastic envelope response lies almost on a
straight line, as is predicted by the Drucker-Prager theory. This motivates
us to define the parameters describing the plasticity in the same way as
this theory: i.e. the yield direction φ, the flow direction ψ, and the plastic
modulus h.

The yield direction is given by the incremental stress direction φwith max-
imal plastic deformation
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|dε̃p(φ)| = max
θ
|dε̃p(θ)|, (6.22)

The flow direction is defined from the orientation of the plastic response at
its maximum value

ψ = atan2(dγp, dep) |θ=φ (6.23)

Here atan2(y, x) is the four quadrant inverse tangent of the real parts of the
elements of x and y. ( −π <= atan2(y, x) <= π). The plastic modulus is
defined from the modulus of the maximal plastic response

1

h
=
|dε̃p(φ)|
|dσ̃| . (6.24)

The incremental plastic response can be expressed in terms of these quan-
tities. Let us define the unitary vectors ψ̂ and ψ̂⊥. The first one is oriented
in the direction of ψ and the second one is the rotation of ψ̂ of 90◦. The
plastic strain is written as:

dε̃p(θ) =
1

h

[
κ1(θ)ψ̂ + κ2(θ)ψ̂

⊥
]
, (6.25)

where the plastic components κ1(θ) and κ2(θ) are given by

κ1(θ) = h(dε̃p · ψ̂)

κ2(θ) = h(dε̃p · ψ̂⊥). (6.26)

These functions are calculated from the resulting plastic response taking
different stress values. The results are shown in Fig. 6.10. We found that
the functions κ1(θ − ψ) collapse on to the same curve for all the stress
states. This curve fits well to a cosine function, truncated to zero for the
negative values. The profile κ2 depends on the stress ratio we take. This
dependency is difficult to evaluate, because the values of this function are
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of the same order as the statistical fluctuations. In order to simplify the
description of the plastic response, the following approximation is made:

κ2(θ)� κ1(θ) ≈ 〈cos(θ − φ)〉 = 〈φ̂ · θ̂〉, (6.27)

where 〈·〉 defines the function

〈x〉 =

{
0 : x ≤ 0,
x : x > 0.

(6.28)

Now, the flow rule results from the substitution of Eqs.(6.25) and (6.27)
into Eq. (6.8):

dε̃p(θ) = J(θ)dσ̃ =
〈φ̂ · dσ̃〉

h
ψ̂. (6.29)
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Although we have neither introduced yield functions nor plastic potentials,
we recover the same structure of the plastic deformation obtained in Sec.
5.2 from the Drucker-Prager analysis. This result suggests the possibility to
measure such surfaces directly from the envelope responses without need
of an a-priori hypothesis about these surfaces. The next step is to verify
the validity of the Drucker-Prager normality postulate, which states that
the yield function must coincide with the plastic potential function [64].

Normality postulate

The Drucker normality postulate establishes that the flow direction is al-
ways perpendicular to the yield surface [64]. Since it was introduced to
describe the plasticity in metals, the question naturally arises as to its va-
lidity for the plastic deformation for soils. With this aim, the yield direction
and the flow direction have been calculated for different stress states. The
results prove that both angles are quite different, as shown in Fig. 6.11. A
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large amount of experimental evidence has also indicated a clear deviation
from Drucker’s normality postulate [78].

It is not surprising that the Drucker postulate, which has been established
for metal plasticity, is not fulfilled in the deformation of granular mate-
rials. Indeed, the principal mechanism of plasticity in granular materials
is the rearrangement of the grains by the sliding contacts. This is not the
case of microstructural changes in the metals, where there is no frictional
resistance [79]. On the other hand, the sliding between the grains can be
well handled in the discrete element formulation, which more adequately
describes the soil deformation.

Yield function and plastic potential

The fact that the Drucker postulate is not fulfilled in the deformation of
the granular materials has led to the so-called non-associated theory of
plasticity [66]. This theory introduces a yield surface defining the yield
directions and a plastic potential function, which defines the direction of
the plastic strain.

Both, yield surfaces and plastic potential function can be calculated from
the yield and flow direction, which in turn are calculated from the strain
envelope response using Eqs. (6.22) and (6.23). According to Fig. 6.11,
they follow approximately a linear dependence with the stress ratio q/p:

φ = φ0 + φ′0
q

p
,

ψ = ψ0 + ψ′0
q

p
. (6.30)

The four parameters ψ0 = 46◦±0.75◦, ψ′0 = 88.3◦±0.6◦, φ0 = 78.9◦±0.2◦

and φ′0 = 59.1◦ ± 0.4◦ are obtained from a linear fit of the data. This
linear dependence with the stress ratio has been shown to fit well with the
experimental data in triaxial [10] and biaxial [80] tests on sand. In fact,
this implies that the plastic potential function and the yield surfaces have
the same shape, independent on the stress level. This is a basic assumption
from the isotropic hardening models [65].
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From Eq. (6.30), one can see that there is a transition from contractancy to
dilatancy around q/p = 0.5. This transition is typically observed in dense
sand under biaxial loading [65]. A consequence of this linear dependency
is that ψ 6= 0 when q = 0. This implies the existence of deviatoric plas-
tic strain when the sample is initially under isotropic loading conditions,
which has been also predicted in the original Cam-Clay model [32].

The existence of deviatoric plastic deformation under extremely small
loading appears to be in contradiction with the fact that the contact net-
work remains isotropic below of a certain stress ratio (see Sec. 6.3.2).
This matter has also been discussed by Nova [65], who introduced some
modifications in the Cam-Clay model in order to satisfied the isotropic
condition [65]. However, we are going to show that the orientational dis-
tribution of the sliding contacts departs from the isotropy for extremely
small deviatoric loadings.

Plasticity & sliding contacts

Under small deformations, the individual grains of a realistic soil behave
approximately rigidly, and the plastic deformation of the assembly is due
principally to sliding contacts (eventually there is fragmentation of the
grains, which is not going to be taken into account here). A complete un-
derstanding of soil plasticity is possible, in principle, by the investigation
of the micromechanical arrangement between the grains. We present here
some observations about the anisotropy induced by loading in the subnet-
work of the sliding contacts. This investigation will be useful to understand
some features of plastic deformation.

The sliding condition at the contacts is given by |ft| = µfn, where fn and
ft are the normal and tangential components of the contact force, and µ
is the friction coefficient. When the sample is isotropically compressed,
we observe a significant number of contacts reaching the sliding condi-
tion. If the sample has not been previously sheared, the distribution of the
orientation of the branch vectors of all the sliding contacts is isotropic.

This isotropy, however, is broken when the sample is subjected to the
slightest deviatoric strain. In effect, at the very beginning of the loading,
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Figure 6.12: Fabric coefficients of the distribution of the contact normal vectors. They
are defined in Eq. (6.31).

most of the sliding contacts whose branch vector is oriented nearly par-
allel to the loading direction leave the sliding condition. The anisotropy
of the sliding contacts is investigated by introducing the polar function
Ωs(ϕ), where Ωs(ϕ)∆ϕ is the number of sliding contacts per particle
whose branch vector is oriented between ϕ and ϕ + ∆ϕ. This can be
approximated by a truncated Fourier expansion:

Ωs(ϕ) ≈ N0

2π

[
c0 + c1 cos(2ϕ) + c2 cos(4ϕ)

]
. (6.31)

The coefficient of this expression are shown in Fig. 6.12. Fig. 6.13 shows
the orientational distribution of sliding contacts for different stress ratios.
For low stress ratios, the branch vectors ` of the sliding contacts are ori-
ented nearly perpendicular to the loading direction. Sliding occurs per-
pendicular to `, so in this case it must be nearly parallel to the loading
direction. Then, the plastic deformation must be such as dεp2 � dεp1, so
Eq. (6.23) yields a flow direction of ψ ≈ 45◦, in agreement with Eq. (6.30).
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Increasing the deviatoric strain results in an increase of the number of the
sliding contacts. The average of the orientations of the branch vectors with
respect to the load direction decreases with the stress ratio, which in turn
results in a change of the orientation of the plastic flow. Close to the failure,
some of the sliding contacts whose branch vectors are nearly parallel to
the loading direction open, giving rise to a butterfly shape distribution,
as shown in Fig. 6.13. In this case, the mean value of the orientation
of the branch vector with respect to the loading direction is around ϕ =

38◦, which means that the sliding between the grains occurs principally
around 52◦ with respect to the vertical. This provides a crude estimate
of the ratio between the principal components of the plastic deformation
as dεp2 ≈ −dεp1 tan(52◦). According to Eq. (6.23) this gives an angle of
dilatancy of ψ = atan2(dγp, dep) ≈ 97◦. This crude approximation is
reasonably close to the angle of dilatancy of 103.4◦ calculated from Eq.
(6.30).

A fairly close correlation between the orientation of the sliding contacts
and the angle of dilatancy has also been reported by Calvetti et al. [47]
using molecular dynamic simulations in triaxial tests. This correlation
suggests that the plastic deformation of soils can be micromechanically
described by the introduction of the fabric constants ci of the equation 6.31
in the constitutive relations. This investigation would lead to new structure
tensors capturing the non-associativity of plastic deformation.

Plastic modulus

The plastic modulus h defined in Eq. (6.24) is related to the incremental
plastic strain in the same way as the Young modulus is related to the in-
cremental elastic strain. Thus, just as we related the Young modulus to the
average coordination number of the polygons, it is reasonable to connect
h to the fraction of sliding contacts ns = N s/N . Here N and Ns are the
total number of contacts and the number of sliding contacts.

Fig. 6.14 shows the relation between the hardening and the fraction of the
sliding contacts taken from q = 0.0, 0.1p, ...0.07pwith different pressures.
The results can be fitted to an exponential relation
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h = ho exp(−ns/n0) (6.32)

Where h0 = 80.0 ± 0.4GPa and n0 = 0.066 ± 0.002. This exponential
dependence contrasts with the linear relation between the Young modulus
and the number of contacts obtained in Sec. 6.3.2. From this comparison,
it follows that when the number of contacts is such that ns > n0, the
deformation is not homogeneous, but is principally concentrated more and
more at the sliding contacts as their number increases.

The above results suggest that it is possible to establish a dependency of the
flow rule on the anisotropy of the subnetwork of the sliding contacts. This
relation is more appropriate than just an explicit relation between the flow
rule and the stress, which probes to be only valid in the case of monotonic
loading [10]. Since the stress can be expressed in terms of micromechani-
cal variables, branch vectors and contact forces, the identification of those
internal variables measuring anisotropy and force distribution would pro-
vide a more general description of the dependence of the flow rule on the
history of the deformation.

0 0.1 0.2 0.3 0.4 0.5
10−3

10
−2

10
−1

100

101

p = 0.16MPa

p = 0.32MPa

p = 0.64MPa

p = 1.28MPa

n
s

k 
 / 

h
n

Figure 6.14: Inverse of hardening modulus versus fraction of sliding contacts ns.
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6.3.4 Yield function

In the previous section, the yield direction defining the flow rule of plastic-
ity was calculated from the incremental strain response dε̃p(θ). According
to the Drucker-Prager theory, this direction must correspond to the perpen-
dicular direction of the yield surface. This surface encloses a hypothetical
region in the stress space where only elastic deformations are possible [64].
The determination of such a yield surface is essential to determine the de-
pendence of the strain response on the history of the deformation.

We attempt to detect the yield surface by using a standard procedure pro-
posed in experiments with sand [78]. Fig. 6.15 shows this procedure. Ini-
tially the sample is subjected to an isotropic pressure. Then the sample is
loaded in the axial direction until it reaches the yield-stress state with pres-
sure p and deviatoric stress q. Since plastic deformation is found at this
stress value, the point (p, q) can be considered as a classical yield point.
Then, the Drucker-Prager theory assumes the existence of a yield surface
containing this point. In order to explore the yield surface, the sample is
unloaded in the axial direction until it reaches the stress point with pres-
sure p − ∆p and deviatoric stress q −∆p inside the elastic regime. Then
the yield surface is constructed by reloading in different directions in the
stress space. In each direction, the new yield point must be detected by
a sharp change of the slope in the stress-strain curve, indicating plastic
deformations.

Fig. 6.16 shows the strain response taking different load directions in the
same sample. The initial stress of the sample is given by q0 = 0.5p0 and
p0 = 160kPa. If the direction of the reload path is the same as that of the
original load (45◦), we observe a sharp decrease of stiffness when the load
point reaches the initial yield point, which corresponds to the origin in Fig.
6.16. However, if one takes a direction of reloading different from 45◦, the
decrease of the stiffness with the loading becomes smooth. Since there is
no straightforward way to identify those points where the yielding begins,
the yield function, as it was introduced by Drucker and Prager [64] in order
to describe a sharp transition between the elastic and plastic regions, is not
consistent with our results.
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6.4 Instabilities

Instability has been one of the classical topics of soil mechanics. Local-
ization from a previously homogeneous deformation to a narrow zone of
intense shear is a common mode of failure of soils [12, 31, 66]. The Mohr-
Coulomb criterion is typically used to understand the principal features of
the localization. This criterion was improved by the Drucker condition,
based on the hypothesis of the normality, which results in a plastic flow
perpendicular to the yield surface [64]. This theory predicts that the in-
stability appears when the stress of the sample reaches the plastic limit
surface. This surface is given by the stress states where the plastic defor-
mation becomes infinite. Since the normality postulate is not fulfilled in
our calculations, it is interesting to see if the Drucker stability criterion is
still valid.

According to the flow rule from Eq. (6.29), the plastic limit surface can be
found by looking for the stress values where the plastic modulus vanishes.
First, we perform a suitable fitting of the dependence of the plastic modulus
on the stress. Fig. 6.17 shows that it can be fitted by the following power
law relation:

h = h0

[
1− q

q0
(
p0

p
)ϑ
]η
. (6.33)

This is given in terms of the four parameters: The plastic modulus h0 =

14.5 ± 0.05 at q = 0, the constant q0 = 0.85 ± 0.05, and the exponents
η = 2.7 ± 0.04 and ϑ = 0.99 ± 0.02. Then, the plastic limit surface is
given by the stress states with zero plastic modulus:

qp
q0

=

(
p

p0

)ϑ
. (6.34)

We found that the failure surface, which is given in Eq. (6.9), does not
correspond to the plastic limit surface. By comparing both equations one
observes that during loading the instabilities appear before reaching the
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plastic limit surface. Theoretical studies have also shown that in the case
of non-associated materials, (i.e. where flow direction does not agree with
the yield direction) the instabilities can appear strictly inside of the plas-
tic limit surface [15]. In this context, the question of instability must be
reconsidered beyond the Drucker condition.

The stability for non-associated elasto-plastic materials has been investi-
gated by Hill, who established the following sufficient stability criterion
[79].

∀dε̃, dσ̃ · dε̃ > 0. (6.35)

The analysis of this criterion of stability will be presented here based on
the constitutive relation obtained in the last section:

dε̃ = D−1dσ̃ +
〈φ̂Tdσ̃〉
h

ψ̂ (6.36)
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Where D is the elastic tensor, ψ and φ are the flow direction and the yield
direction, and h is the plastic modulus. The stability condition of this
constitutive relation can be evaluated by introducing the normalized second
order work [15]:

d2W ≡ dσ̃ · dε̃
|dσ̃|2 (6.37)

Then, the Hill condition of stability can be obtained by replacing Eq. (6.36)
in this expression. This results in

d2W = R(θ) +
〈cos(θ + φ)〉

h
cos(θ + ψ) > 0 (6.38)

whereR(θ) is defined by Eq. (6.15). In the case where the Drucker normal-
ity postulate ψ = φ is valid, Eq. (6.38) is strictly positive and, therefore,
the Hill stability condition would be valid for all the stress states inside the
plastic limit surface. On the contrary, for a non-associated flow rule as in
our model, the second order work is not strictly positive for all the load
directions, and it can take zero values inside the plastic limit surface (i.e.
during the hardening regime where h > 0).

To analyze these instability, we adopt a circular representation of d2W
shown in Fig. 6.18. The dashed circles in these figures represent those
regions where d2W < 0. For stress ratios below q/p = 0.7 we found
that the second order work is strictly positive. Thus, according to the Hill
stability condition, this region corresponds to stable states. For the stress
ratio q/p = 0.8, the second order work becomes negative between 27◦ <
θ < 36◦ and 206◦ < θ < 225◦. This leads to a domain of the stress space
strictly inside the plastic limit surface where the Hill condition of stability
is not fulfilled, and therefore the material is potentially unstable.

As presented in Chapter 4, numerical simulations of biaxial tests show that
strain localization is the most typical mode of failure. The fact that it ap-
pears before the sample reaches the plastic limit surface suggests that the
appearance of this instability is not completely determined by the current
macroscopic stress of the material, as it is predicted by the Drucker-Prager
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Figure 6.18: The solid lines show the second order work as a function of the direction
of load for three different stress ratios q/p = 0.6 (left), 0.7 (center), and 0.8 (right) with
pressure p = 160kPa. The dashed circles enclose the region where d2W < 0.

theory. More recent analytic [81] and experimental [12, 53] works have fo-
cused on the role of the microstructure on the localized instabilities. Fric-
tional slips at the particles have been used to define additional degrees of
freedom [81]. The introduction of the particle diameter in the constitutive
relations results in a correct prediction of the shear band thickness. The
new degrees of freedom of these constitutive models are still not clearly
connected to the micromechanical variables of the grains, but with the de-
velopment of numerical simulations this aspect can be better understood.

6.5 Concluding remarks

The elasto-plastic response of a Voronoi tessellated sample of polygons
has been calculated in the case of monotonic and quasistatic loading. The
plastic response reflects several aspects of realistic soils. They have been
discussed in relation to the existing elasto-plastic models. The most salient
features are shown in Fig.6.19:

• The incremental elastic response has a centered ellipse as an envelope
response. Below the stress ratio q/p < 0.4, this response can be
described by the two material parameters of Hooke’s law of elasticity:
the Young modulus and the Poisson ratio. Above this stress ratio
there is a dependence of the stiffness on the stress ratio, which can
be connected to the anisotropy induced in the contact network during
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Figure 6.19: Elastic response dε̃e and plastic response dε̃p for different stress values. The
yield direction is represented by the direction of the dashed line at each stress value. The
solid line represents the plastic limit surface. The dash-dotted line is the failure surface.

loading. We should state that this result might be dependent on the
preparation procedure. In particular, samples with void ratio different
from zero show a smooth transition to the anisotropy, which requires
further studies.

• The plastic envelope responses lie almost on the straight line defin-
ing the plastic flow direction ψ. The yield direction ψ and the
plastic modulus h have also been calculated directly from the plas-
tic response. In agreement with soil experiments, we found a non-
associated flow rule of plasticity with ψ < φ. This flow rule is
in agreement with the prediction of the standard theory of elasto-
plasticity.

• The flow direction and yield direction depend on the stress ratio, in
agreement with the so-called stress-dilatancy relation of experiments
on soils. In particular, the plastic flow for zero stress ratio has a
nonzero deviatoric component suggesting an anisotropy induced for
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extremely small deviatoric strains. We found that this effect comes
from the fact that the sliding contacts depart from the anisotropy when
the sample is sheared.

• In the investigation of the connection between the plastic deformation
and the number of sliding contacts, we found that the plastic modulus
h decays exponentially as the fraction of sliding contacts increases.
This contrasts with the linear decrease of the Young modulus E with
the increase of the number of open contacts, suggesting that the de-
formation of the granular assembly is concentrated at the sliding con-
tacts.

• The experimental method proposed by Tatsouka has been imple-
mented to identify the yield surface. The resulting strain response
shows that the transition from elasticity to elasto-plasticity is not as
sharp as the Drucker-Prager theory predicts, but a smooth transition
occurs. The fact that there is no purely elastic regime leads to the
open question of how to determine the dependence of the response of
soils on the history of the deformation.

• The calculation of the plastic limit condition and the failure surface
shows that the failure appears during the hardening regime h > 0.
This result is consistent with the Hill condition of stability, which
states that for non-associated materials the instabilities can appear be-
fore the plastic limit surface.

Since the mechanical response of the granular sample is represented by a
collective response of all the contacts, it is expected that the constitutive
relation can be completely characterized by the inclusion of some internal
variables, containing the information about the microstructural arrange-
ments between the grains. We have introduced some internal variables
measuring the anisotropy of the contact force network. The fabric coeffi-
cients ai, measuring the anisotropy of the network of all the contacts, prove
to be connected to the anisotropic stiffness. On the other hand, the fabric
coefficients ci, measuring the anisotropy of the sliding contacts, are related
to the plasticity features of the granular materials.

Future work should be oriented towards the elaboration of a theoretical
framework connecting the constitutive relation to these fabric coefficients.
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To provide a complete micromechanically based description of the elasto-
plastic features, the evolution equations of these internal variables must be
included in this formalism. This theory would be an extension of the ideas
which have been proposed to relate the fabric tensor to the constitutive
relation of granular materials [3–6, 82].



Chapter 7

Granular Ratcheting

”... the micromechanical ratcheting, i.e. the systematic shift of con-
tacts against each other due to geometrical asymmetry generated
under the cyclic loading. This ratcheting can be macromechani-
cally measurable by a slow convection movement within the pack-
ing.”

Hans Herrmann: draft of the DFG project:
Micromechancial investigation of the granular ratcheting.

”If this effect is true, then it has a big implication for theories (and
application) of constitutive laws in granular material. It is still
difficult for me to believe it, and I will try to find time to do some
tests of my own.”

Peter Cundall: private communication.

” There have been a number of models which show very clear
ratcheting in small cycles - with high stiffness on unloading and
low stiffness on reloading. I think this is not what the experiments
show. In reality one sees hysteretic response even for very small
cycles - so there is energy dissipation - but there may actually not
be much accumulation of strain. And one expects that if the density
increases as a result of accumulation of volumetric compression,
then that will tend to increase plastic and elastic stiffness and re-
duce the rate at which subsequent strains develop.”

David Wood: private communication.

97
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In this last chapter we will introduce a long time effect in granular ma-
terials, which is still under discussion in the scientific and engineering
community. This effect is known as ratcheting, and it concerns the lin-
ear accumulation of permanent deformation per cycle in granular materials
when they are subjected to load-unload stress cycles with extremely small
loading amplitudes. Although there is wide experimental evidence about
accumulation of permanent deformation under cyclic loading [14, 83–89],
it is not clear whether this effect remains for small loading amplitudes,
or if there is a certain regime where the material behaves perfectly elastic
[28, 65, 68]. It is still also not clearly understood what is the role of the
micromechanical rearrangements such as sliding, crushing and wearing of
the grains, in the macromechanical aspects of the accumulation of plastic
deformation with the number of cycles [83–86, 90, 91].

Here we will present numerical evidence of this ratcheting effect for small
loading amplitudes on assemblies of densely packed polygons. This can
be detected at the micromechanical level by a ratchetlike behavior at the
contacts. This effect excludes the existence of the rather questionable finite
elastic regime of noncohesive granular materials.

Before going to the results, we will introduce the concepts of ratchet,
ratchet effect and ratcheting, which have been used in the recent years
in many different contexts.

7.1 Ratchets and ratcheting

Chapter 46 of the Feynman Lectures on Physics [92] contains a celebrated
illustration of a simple device which is able to extract work from unbiased
thermal fluctuations. As shown in Fig. 7.1, the device is nothing but a
pawl that engages the sloping teeth of a wheel, permitting motion in one
direction only. An axle connects this wheel with some vanes, which are
surrounded by a gas. The vanes are randomly hit by the gas molecules, but
due to the presence of the pawl, only collision in one direction can make
the wheel lift the pawl and advance it to the next notch.

The possibility to extract work from noise using ratchet devices has at-
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Figure 7.1: There are two boxes with a vane in one and a wheel that can only turn one
way. Each box is in a thermal bath of gas molecules at equilibrium. The two boxes are
connected mechanically by a thermally insulated axle. The entire device is considered
to be reduced to microscopic size so gas molecules can randomly bombard the vane, to
produce motion.

tracted many recent researchers [93, 94]. There is already an extensive
body of work on this subject, driven by the need to understand the molecu-
lar motors that are responsible for many biological motions, such as cellu-
lar transport or muscle contraction [93]. Recently, this kind of mechanism
has been experimentally demonstrated using the technology available to
build micrometer scale structures. Many man-made ratchet devices have
been constructed, and they are used as mechanical and electrical rectifiers
[94].

Granular media also show ratcheting effects when they are vertically vi-
brated upon an asymmetric sawtooth-shaped base [95–97]. The main in-
gredients of the experimental setup are shown in Fig. 7.2. The base is
vertically vibrated with a displacement that depends sinusoidally on time.
Above a certain characteristic vibration amplitude, the asymmetry of the
teeth breaks the symmetry of the AC driving force, leading to net horizon-
tal motion [95]. Such rectification of a fluctuating force induces segrega-
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Figure 7.2: Diagram of the experimental apparatus to study the ratchet-induced flow in a
granular material. The profile has a sawtooth shape. When the assembly is subjected to
vertical vibration a convective flow in the horizontal direction appears.

tion and transport in the granular material [96, 97].

The concept of ratcheting has been also introduced in soil mechanics, to
describe the gradual accumulation of permanent deformation in granular
materials subjected to cyclic loading [83]. At the micromechanical level,
it is related to a systematic shift of the sliding contacts. We will show that
this is due to the load-unload asymmetry of the contact force network at
each contact. This ratcheting can be macromechanically measurable by
slow convection movement within the packing.

Before going into the micromechanical description of this effect, we will
introduce the importance of the ratcheting in deterioration of structures and
the existing theoretical approaches to this phenomenon.

7.2 Cyclic loading in soil mechanics

The ancient city of Petra was built from 800 BC to 100 AD by the Na-
betean Arabs. In this era, Petra was a fortress, carved out of craggy rocks
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in an area, which was virtually inaccessible. In the first and second cen-
tury, after the Romans took over, the city reached the peak of its fame.
When caravan routes were slowly displaced by shipping, the city’s impor-
tance gradually decreased; it fell into disuse and was lost to the world until
1812, when it was rediscovered by the Swiss explorer Johann Ludwig Bur-
ckhardt. Nowadays Petra is Jordan’s number one tourist attraction. As a
consequence, it is now in grave danger of being destroyed by the unstop-
pable march of tourism. More than 4000 tourists a day visit Petra’s rocky
tomb.

It is not just Petra’s temples that are under threat of destruction. More than
600 millions tourists a year now travel the globe, and vast number of them
wanting to visit the word’s most treasures sites. If appropriate measures are
not taken in time, tourism would certainly progressively destroy all these
cultural treasures.

Not only tourism, but also transportation needs in general have taken off in
the last decades [90]. Traditional methods to evaluate the deterioration of
foundations under repeated loading are still almost completely empirical
[86]. The increase of traffic loads have resulted in a rapid deterioration of
the public road system, and therefore in a rise of maintenance expenses.
This has attracted the attention of public authorities that is urging the road
construction industry to optimize its designs.

Concerning the pavement design, experimental [14, 86–88, 98] and analyt-
ical [28, 90] procedures have been developed based on the analysis of the
response of the unbound granular materials under specific load conditions.
These studies are based on the assumption that rutting occurs mostly in
the unbound granular materials used in the subgrades [98]. The gradual
accumulation of permanent deformations in the subgrade can lead to even-
tual formation of ruts or cracks in the pavement due to excessive rutting.
Whether a given system will experience progressive accumulation of per-
manent deformation, or whether the increase of permanent deformation
will stop, is crucial for performance predictions.

Most of the research carried out over recent years concentrated on the over-
all behavior of prepared samples in laboratory tests which was then inter-
preted using constitutive models, maybe due to the practical difficulties
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in studying permanent deformation at the grain level. Recent pavement
designs, however, point out the necessity of a detailed study on the mi-
cromechanics of the permanent strain.

7.2.1 Continuous models for cyclic loading

The constitutive behavior of unbound granular soil under cyclic loading
has been investigated in the framework of the shakedown theory [28, 89,
90]. This theory predicts that a granular material is liable to show progres-
sive accumulation of plastic strains under repeated loading if the magni-
tude of the applied loads exceeds a limiting value called the shakedown
limit. The material is then said to exhibit Ratcheting On the other hand,
if the loads are under this limit, the growth of permanent deformations
will eventually level off and the material is said to have attained a state of
shakedown by means of adaptation to the applied loads. More in detail,
the shakedown concept maintains that there are four categories of material
response under repeated loading:

• An elastic range for low enough loading levels, in which no perma-
nent strains occurs.

• Elastic shakedown, where the applied stress is slightly under the plas-
tic shakedown limit. The material response is plastic for a finite num-
ber cycles. However the ultimate response is elastic.

• Plastic shakedown, where the applied stress is slightly less than that
required to produce ratcheting. The material achieves a long-term
steady state response with no accumulation of plastic strain and hys-
teresis.

• Incremental collapse or ratcheting, where the applied repeated stress
is relatively large. Plastic strains accumulate rapidly with failure oc-
curring in the relatively short term.

Shakedown theory is essentially an extension of the classical Drucker-
Prager theory of elasto-plasticity. This theory describes the cyclic loading
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response by postulating a certain region in the stress space where only elas-
tic deformations are possible [64]. However, this basic assumption does
not seem to be confirmed by experiments on cyclic loading, which show
that the onset of the ratcheting with the increase of the loading amplitude
is gradual and not sharply defined [14].

Some sophisticated models have been proposed in order to mend these de-
ficiencies of the Drucker-Prager theory in the description of the smooth
transition from elasticity to elasto-plasticity. In the boundary surface the-
ory, the cumulative plastic deformation for small cycles of loading is mod-
eled by shrinking the elastic nucleus to the current stress state [77]. This
theory is not found widespread in the geotechnical application, due to its
complex mathematical structure which does not allow one to simulate large
number of cycles, and the great number of parameters in it that are difficult
to calibrate.

Taking another perspective, some cyclic loading models have been devel-
oped starting from the theory of hypoplasticity. Besides the stress and
the void ratio, these models introduce additional internal variables such as
the back stress tensor [99] or the intergranular strain [100]. These models
have also been skeptically received by the engineering community due to
the scarce physical meaning of these internal variables.

Most of the attempts to identify the internal variables of constitutive equa-
tions are based on macromechanical observations of the response of soil
samples in conventional apparatus. The micromechanical investigation
would certainly help get an insight into these internal variables. Indeed, the
mechanical response of the granular soils is no more than a combined re-
sponse of many micromechanical arrangements, such as interparticle slips,
breakage of grains and wearing of the contacts.

7.2.2 Discrete approach on the cyclic loading response

Using discrete element models, different micromechanic aspects of the re-
sponse of granular materials under monotonic loading have been adressed
by many authors. Amazingly, few studies have been reported about the be-
havior of granular material under cyclic loading conditions. Some recent
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discrete element calculations of cyclic loading have addressed the phe-
nomenon of liquefaction [101]. This is a phenomenon that takes place
during earthquakes. It causes a reduction of the stiffness of soils so that
they behave as viscous fluids rather than solids. These numerical simula-
tions are performed under strain-controlled loading. Under small loading
amplitudes, there is a certain amount of stress buildup over the course of
the loading cycles, but this effect should stop after some number of cycles
because the contact forces cannot increase indefinitely.

In order to observe ratcheting behavior, unless one of the directions of the
sample must be subjected to stress controlled loading. In this way, perma-
nent deformation is allowed in this direction. We perform here a simulation
of load-unload stress cycles. This condition is similar to experimental tests
performed for testing granular materials for pavement [14, 90].

7.3 Simulation of cyclic loading

Just to start a micromechanical investigation on the behavior of soils un-
der cyclic loading, we perform MD simulations on polygonal packings. To
obtain homogeneous, dense granular samples, the polygons are placed ran-
domly inside a rectangular frame consisting of four walls. Then, a grav-
itational field is applied and the sample is allowed to consolidate. The
external load is imposed by applying a force σ1H and σ2W on the hori-
zontal and vertical walls, respectively. Here σ1 and σ2 are the vertical and
horizontal stresses. H and W are the height and the width of the sample.

In the simulation of the cyclic loading response of a polygonal packing we
use a procedure equivalent to the laboratory biaxial test. First, the sample
is isotropically compressed until the pressure p0 is reached. Then, the ver-
tical stress σ1 = p0 is kept constant and the horizontal stress is modulated
as σ1 = p0 + ∆σ[1 − cos(πt/t0)]/2. This smooth modulation is chosen
in order to minimize the acoustic waves produced during the load-unload
transition. ∆σ is chosen between 0.001p0 and 0.6p0. These values should
be compared to the maximal stress during the biaxial test, which is around
0.75p0 in this model.
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Figure 7.3: (a) Deviatoric stress versus deviatoric strain in the first 40 cycles. (b) per-
manent (plastic) strain γN after N cycles versus the number of cycles. (c) stress against
the volume fraction in the first 40 cycles. (d) volume fraction ΦN after N cycles versus
number of cycles.

7.3.1 Stress-strain calculation.

In experimental tests, the response of a sample subjected to loading-
unloading stress cycles is given by a progressive compaction, and a per-
manent accumulation of plastic deviatoric deformation as the number of
cycles increases. We will see that these two important features are ob-
served in our numerical simulations.

The strain tensor is calculated here averaged over a representative volume
element (RVE). This RVE is obtained selecting the polygons whose centers
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of mass are less than 10` from the center of the sample, where ` is the mean
diameter of the polygons. Then, the strain is calculated as the displacement
gradient tensor averaged over the area enclosed by the initial configuration
of these polygons. From the eigenvalues ε1 and ε2 of the symmetric part of
this tensor (usually called strain tensor) we obtain the deviatoric strain as
γ = ε1− ε2. The volume fraction is calculated as Φ = (Vp−V0)/Vb, where
Vp is the sum of the areas of the polygons, V0 the sum of the overlapping
areas between them, and Vb the area of the rectangular box.

Part (a) of Fig. 7.3 shows the relation between the axial stress σ1 and the
deviatoric strain γ in the case of a loading amplitude ∆σ = 0.6p0 where
p0 = 160kPa. This relation consists of open hysteresis loops, which nar-
row as consecutive load-unload cycles are applied. This hysteresis pro-
duces an accumulation of strain with the number of cycles which is rep-
resented by γN in part (b) of Fig 7.3. We observe that the strain response
consists of short time regimes, with rapid accumulation of plastic strain,
and long time ratcheting regimes, with a constant accumulation rate of
plastic strain of around 2.4× 10−6 per cycle.

Part (c) of Fig. 7.3 shows the relation between the deviatoric stress and the
volume fraction. This consists of asymmetric compaction-dilation cycles,
which make the sample compact during the cyclic loading. This com-
paction is shown in part (d) of Fig. 7.3. We observe a slow variation of the
volume fraction during the ratcheting regime, and a rapid compaction dur-
ing the transition between two ratcheting regimes. Note that the amount
of ratcheting, i.e. the slope of the curve in part (b) of Fig. 7.3, shows no
dependence with the compaction level of the sample. This suggests that
the granular ratcheting will remain for very large number of cycles, even
when the volume ratio is very close to the saturation level.

The evolution of the volume ratio seems to be rather sensitive to the initial
random structure of the polygons. Even so we found that after 8 × 103

cycles the volume fraction still slowly increases in all the samples. This
behavior resembles the very slow compaction that has been experimentally
observed during the cyclic shearing on packing of spheres [102]. In these
experiments, the convergence of the volume ratio to the saturated level
proves to be slower than any exponential or algebraic law.
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Figure 7.4: Cumulative plastic deformation as a function of the number or cycles for
∆σ = 0.01p0. The magnification shows the strain accumulated after the 40th cycle.

The extremely slow dynamics in the evolution of the granular packing
shows an astonishing analogy with the behavior of glassy systems [103].
Based on a considerable amount of experimental data of compaction of
granular materials, the similarity in the dynamics of granular matter under
vibration and glass forming materials has been addressed by several au-
thors [104–106]. This has been first revealed by the very slow relaxation
of the density. Later on, memory experiments [102] and simulations in-
spired by earlier spin glass studies [107, 108] have also given support to
this conclusion.

7.3.2 Limit of small cycles

One would expect that for small enough amplitudes of the loading cycles,
one can reach the elastic regime postulated in the shakedown theory [28].
In an attempt to detect this elastic regime, we decreased the amplitude of
the load cycles and evaluated the corresponding asymptotic response.
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Figure 7.5: Plastic deformation per cycle for different loading amplitudes. The calcula-
tions are performed on six different samples.

Fig.7.4 shows the cumulative plastic deviatoric strain γ resulting from the
application of loading cycles with amplitude ∆σ = 0.01p0. During the first
cycles a transient regime showing a decay of the permanent deformation
per cycle is observed. This behavior resembles the shakedown response
of the elasto-plastic models. However, a magnification of Fig.7.4 reveals
a surprising fact: After the application of hundred cycles, the shakedown
behavior is replaced by the ratcheting regime. In this asymptotic behavior,
one obtains a constant amount of plastic deformation in each cycle.

Regardless of the amplitude of the loading cycles, one always obtains
ratcheting behavior in the long time behavior. This is shown in the accumu-
lation strain rate ∆γ/∆N for different loading amplitudes ∆σ in Fig. 7.5.
A constant accumulation of strain is observed during the cyclic loading,
even when the amplitude is as small as 10−3 times the applied pressure.
Of course, due the smallness of the ratcheting response for these loading
amplitudes, one can say that for small loading amplitudes the response is
practically elastic. Even if the slight repeated loading produced by the
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Figure 7.6: Permanent deviatoric strain for different periods of cyclic loading t0. The
inset shows the plastic deformation per cycle averaged over the last 1000 cycles. Each
symbol in the inset corresponds to a value of t0/ts, where ts is defined in Sec. 3.6.

transit of ants would produce plastic deformation after some centuries, it
is not possible to make them to follow the same path all this time. How-
ever, it is important to address that Fig. 7.5 shows a smooth transition
from the shakedown response to the ratcheting response. In the context of
the phase transitions, this means that the distinction between the ratcheting
and shakedown regime is rather meaningless.

7.3.3 Quasi-static limit

Since the molecular dynamics involves damping forces, it is important to
know what is the role of these forces in the granular ratcheting behavior.
Damping and inertial effects can be evaluated by performing the same test
with different loading frequencies. Fig. 7.6 shows that as the frequency
is reduced, the ratcheting effect gets progressively smaller until the qua-
sistatic regime is reached. In this regime a reduction by one half of the
frequency does not affect the strain response more than 5%. From this
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Figure 7.7: Orientation angle ϕ and mobilized angle η of the contact force f .

result one can conclude that damping or inertial effects do not affect the
appearance of ratcheting in the sample, so that this is a genuine quasistatic
effect.

Note that the time in which the transition between two ratcheting regimes
occurs, seems to be different according to the frequency. Thus, damping
or inertial effect may be important to include in the description of this
transition. This study is however beyond to the scope of this work.

7.4 Micromechanical aspects

Due to the strong temporal fluctuations that have been observed in driven
granular materials [109], the existence of these ratcheting regimes with
constant accumulation of plastic deformation per cycle appears to be some-
what counterintuitive. We have noticed, however, that the existence of
quasiperiodic regimes in the evolution of the contact forces can explain
this particular behavior.

The basic elements of the micromechanical description of the granular
ratcheting are shown in Fig. 7.7. For each contact we define an angle



Granular Ratcheting 111

Figure 7.8: Contact force network in an isotropically compressed sample. The width of
the lines represents the normal force.

ϕ, that is given by the orientation of the branch vector. This vector con-
nects the center of mass of the polygon with the point of application of the
force. The contact force f is decomposed in its normal fn and tangential
ft components respect to the contact line. The angle η = arctan(ft/fn) is
defined as the mobilized angle of the force. The sliding condition is given
by tan(η) = ±µ, where µ is the friction coefficient.

7.4.1 Fluctuations on the force.

A striking feature of granular materials is that distribution of forces within
the material shows to be very heterogeneous. As shown in Fig. 7.8, the
stress applied on the boundary is transmitted through chains along which
the contact forces are particularly strong. These heterogeneities have also
been observed using numerical simulations [8], and experimentally, using
photo-elastic experiments [74, 75].

We have first studied the evolution of the distribution of the normal forces
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during the cyclic loading, in the case of a loading amplitude ∆σ = 0.6p0.
A broadening of the distribution is observed during each loading phase,
followed by a narrowing of the distribution during the unloading phase.
The time evolution of the first and the second moment of the distribu-
tion show that it reaches a periodic broadening-narrowing regime once the
ratcheting behavior is reached.

In Figure 7.9 we plot the distribution function of normal forces at four dif-
ferent snapshots of the simulation. The best-fit curve is also included for
an easier comparison. Note that although all distributions were measured
at different times of the simulation, they correspond to the same stage of
the cyclic loading. It is observed that the shape of the distribution of forces
at this point remains approximately constant throughout the whole simu-
lation. In this work we do not study the evolution of this distribution in
detail, but rather focus on the evolution of the sliding contacts.
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7.4.2 Sliding contacts

One of the most important features of the force network is the high number
of sliding contacts. Although most of the contacts satisfy the elastic con-
dition |ft| < µfn, the strong heterogeneities of the contact force network
produce a considerable amount of contacts reaching the sliding condition
|ft| = µfn during the compression. Those sliding contacts carry most
of the irreversible deformation of the granular assembly during the cyclic
loading. Opening and closure of contacts are quite rare events, and the
coordination number of the packing keeps it approximately its initial value
4.43± 0.08 in all the simulations.
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Figure 7.10: (a) and (b) Trajectories of the contact force of two selected sliding contacts.
The dots denote the times t = 0, 0.5t0, ..., 2t0 in unit of the period t0. The dashed line
shows the sliding condition |ft| = µfn. (b) and (d) Plastic deformation ξ at the contacts
shown in (a) and (c).
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Some typical trajectories of the force at the sliding contacts are shown in
parts (a) and (c) of Fig. 7.10. After certain loading cycles the contact forces
reach the quasi-periodic behavior. In this regime, a fraction of the contacts
reaches almost periodically the sliding condition. The load-unload asym-
metry of the contact force loops makes the contacts slip the same amount
and in the same direction during each loading cycle.

A measure for the plastic deformation of the sliding contact is given by
ξ = (∆xct −∆xet)/`, where ∆xct and ∆xet are the total and the elastic part
of the tangential displacement at the contact, the last one being given by
Eq. (3.1) in Sec. 3.2.2. Parts (b) and (d) of Fig. 7.10 show the plastic
deformation ξ of the two sliding contacts. Due to the load-unload asym-
metry of the contact force loop, a net accumulation of plastic deformation
is observed in each cycle. In the case of the contact shown in part (b)
of Fig. 7.10, the contact slips forward during the loading, and backward
during the unloading phase. This sliding results in a net accumulation of
permanent deformation per cycle. The other contact behaves elastic during
the loading and slips during the unloading. This mechanism resembles the
Feynman ratchets presented in Sec. 7.1.

It is interesting to observe the spatial correlation of these ratchets. Fig.
7.11 shows a snapshot of the field of plastic displacement per cycle at the
contacts inside of the assembly. We see that correlated displacements co-
exist with a strongly nonhomogeneous distribution of amplitudes. Local-
ized slip zones appear periodically during each ratcheting regime. Some
slip zones are destroyed and new ones are created during the transition be-
tween two ratcheting regimes. Moreover, we notice that these ratchets are
found as well at the boundaries as in bulk material, without the layering
effects observed in vibrated granular materials [75].

7.4.3 Anisotropy & Feynman ratchets

From small loading amplitudes, the appearance of ratchetlike motion ap-
pears to be a consequence of the anisotropy induced by the loading on the
distribution of the sliding contacts. We will perform a micromechanical
inspection of this effect in the case of ∆σ = 0.01p0.
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The anisotropy of the sliding contact can be measured from the orienta-
tional distribution of these contacts. This distribution is given by the orien-
tation ϕ of the branch vectors of the sliding contacts (see Fig. 7.7). During
compression, the distribution of sliding contacts is isotropic. However, we
found in Sec. 6.8 that extremely small loads induce anisotropy. Indeed,
during loading those sliding contacts whose orientation is nearly parallel
to the loading direction leave the sliding condition.

The appearance of the anisotropy can be schematically explained from Fig.
7.7. Let us suppose that both polygons belong to an assembly, which has
been isotropically compressed. Let us also assume that the contact force
satisfies the sliding condition ft = µfn. Imagine that a small loading is
imposed on the assembly in the vertical direction. Since the branch vector

Figure 7.11: The arrows represents the field u of the plastic deformations accumulated at
the contacts during one cycle: u = 500(ξN+1− ξN), where ξN is the plastic displacement
after N cycles.
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in this example is oriented nearly in this loading direction, the normal force
will increase more than the tangential one, and the contact will leave the
sliding condition. On the contrary, if the loading is applied in the horizontal
direction, the tangential force will increase more than the normal force, and
the contact will remain in the sliding condition.

This picture is useful to explain the complex evolution of the orientational
distribution of the sliding contacts, that is shown in Fig. 7.12. During the
first cycle, sliding contacts oriented nearly parallel to the load direction
stick during the loading phase, and some of them slip during the unload
phase. On the other hand, the sliding contacts orientated nearly perpendic-
ular to the load direction slip during the loading phase, and stick during
the unload phase. These slip-stick mechanisms in each load-unload cycle
resemble again the Feynman ratchets. We will see that after many load-
ings some of the initially sliding contacts still reach the sliding condition,
even under extremely small loading amplitudes. The ratchetlike behav-
ior of these contacts gives rise to a constant accumulation of permanent
deformation per cycle in the material.
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Figure 7.12: Distribution of the orientation ϕ of the sliding contacts arising in the first
two load-unload phases.
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7.4.4 Displacement field

During the ratcheting regime, the constant accumulation of plastic defor-
mation per cycle at the sliding contacts will be reflected in a constant dis-
placement per cycle at the individual grains. It is of great interest to study
the patterns that are created by the displacement field of all the grains.

During the cyclic loading, the trajectory of a single particle is given by
a constant, small displacement per cycle in the ratcheting regime, and a
large displacement during the transition between two ratcheting regimes.
Typically, the maximal displacement per cycle at this transition is one or
two orders of magnitude larger than in the ratcheting regime.

The upper part of Fig. 7.13 shows a snapshot of the displacement per cycle
of the particles for these two cases. The most important remark of this flow
is the formation of vortex structures. An animation of this flow showes a
constant vorticity field during the ratcheting regime, and large vorticities
during the transition of two ratcheting regime. We have also observed that
vortex structures are created and destroyed during this transition.

Since the vorticity is linked with the a nonvanishing antisymmetric part of
the displacement gradient [110], the strain tensor is not sufficient to pro-
vide a complete description of this convective motion during cyclic load-
ing. An appropriate continuum description would require the introduction
of additional degrees of freedom taking into account the vorticity. As in
the case of the shear band formation, the Cosserat theory may be a good
alternative [111].

7.4.5 Micro-macro transition

In this last chapter we established a correlation between the amount of
the plastic deformation and the fraction of sliding contacts. Coming back
to this point, we will see that the main aspects of the hysteretic response
during cyclic loading can be explained from the analysis of the sliding
contacts.

We will establish a correlation between the dynamics of the sliding con-
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Figure 7.13: Snapshot of the simulation of cyclic loading with ∆σ = 0.6p0.The upper
image corresponds to an instant in which the assembly is in a ratcheting regime; the lower
one to a instant during the transition between two ratcheting regimes. The arrows repre-
sent 105∆u in the upper image and 103∆u in the lower one. Here ∆u is the displacement
of the particle per cycle.



Granular Ratcheting 119

tacts and the evolution of the stiffness of the material. The latter is given
by the slope of the stress strain curve in part (a) of Fig. 7.3. The evolution
of the fraction ns = Ns/Nc of sliding contacts with the number of loading
cycles is shown in Fig. 7.14. HereNs is the number of sliding contacts and
Nc is the total number of contacts. During each loading phase, the number
of sliding contacts increases, giving rise to a continuous decrease of the
stiffness as shown in part (a) of Fig. 7.3.

A very important aspect of the dynamic of the sliding contacts is the abrupt
reduction in the number of sliding contacts at the transition from load to
unload. At the macromechanical level, this is reflected by the typical dis-
continuity in the stiffness observed under reversal loading.

During cyclic loading the number of sliding contacts tends to decrease,
which produces a narrowing of the hysteresis loops. In the long time
behavior one can also see that some contacts reach almost periodically
the sliding state even for extremely small loading cycles. The ratchetlike
behavior of these contacts produces a net displacement of the hysteretic
stress-strain loop in each cycle, giving rise to the ratcheting response. Cer-
tainly, a deeper investigation of the evolution of this sliding contacts during
loading would provide the basis for a micromechanical description of the
hysteretic response of soils.

7.5 Concluding remarks

A grain scale investigation of the cyclic loading response of a packing of
polygons has been presented. In the quasistatic regime, we have shown
the existence of long time regimes with a constant accumulation of plastic
deformation per cycle, due to ratcheting motion at the sliding contacts.

As the loading amplitude decreases, we observe a smooth transition from
the ratcheting to the shakedown regimes, which does not allow one to iden-
tify a purely elastic regime. For small loading amplitudes the granular
ratcheting results from the anisotropy induced by the loading on the slid-
ing contacts.

The overall response of the polygonal packing under cyclic loading con-
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sists of a sequence of long time ratcheting regimes, with slow accumulation
of plastic deformation. These regimes are separated by short time regimes
with large plastic deformations.

The analysis of the displacement field per cycle of the particles shows that
each one moves with constant displacement per cycle during the ratcheting
regimes. These displacements form vortexlike structures, which remain
during the time of the ratcheting regime.

The existence of granular ratcheting may have deep implications in the
study of the permanent deformation of soils subjected to cyclic loading.
More precisely, it may be necessary to introduce internal variables in the
constitutive relations, connecting the dynamics of the sliding contacts to
the evolution of the continuous variables during cyclic loading.

At this time, a comparison of the dynamic simulations with realistic sit-
uations is limited by the computer time needed for simulations. Using a
computer with a 2.4GHz processor we are able to simulate only 20 cycles
per hour. The improvement of computational efficiency may require one to
explore another discrete element techniques such as the method of contact
dynamic [9]. Contact dynamics would be a more appropriate method for
the simulation of these systems, especially in the case of grains with very
high stiffness.

The similarity of results with the recently reported elasto-plastic behavior
in packings of disks [112] indicates that these phenomena do not depend
on the geometry of the grains, and that they may be inherent to the gran-
ular interactions. the existence of granular ratcheting in three-dimensional
systems is still an open question.
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Chapter 8

Conclusions

In this thesis a micromechanical investigation of the plastic deformation of
soils has been presented, using molecular dynamics simulations. A simple
two-dimensional model has been used to represent the granular material.
This model captures the diversity of grain shapes, as well as the quasistatic
friction forces at the contacts. An averaging formalism has been imple-
mented in order to compute the macromechanical quantities such as the
stress and strain tensor, from the micromechanical quantities of the simu-
lations: contact forces, displacements and rotations of the grains.

The incremental stress-strain relation of this model has been calculated in
the quasistatic regime. The simulation results have been compared to the
existing incremental rate-independent constitutive models. The resulting
incremental response has been used to verify the basic assumption of the
elasto-plastic theory and incremental nonlinear models. In spite of the
simplicity of our model, it can reproduce the principal features of realistic
soils, such as the anisotropy of the elastic response, the stress-dilatancy
relation, the non-associated flow rule of plasticity, the strain localization,
and the existence of instabilities in the hardening regime.

As elasto-plastic theories predict, the resulting incremental response has
two well-defined tensorial zones. We found also that the superposition
principle is fulfilled, which is consistent with the existence of these ten-
sorial zones. These results suggest that the elasto-plasticity is more ap-
propriate than the incremental nonlinear models, in the description of the
incremental response of this model.

123
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The connection between the elasto-plastic response and the micromechan-
ical rearrangements has been studied by the introduction of some internal
variables, measuring the anisotropy of the contact network. These vari-
ables correspond to a generalization of the fabric tensor. They have been
used to correlate the anisotropy of the contact network with the elastic
response. The most salient aspects of the plastic deformation are also ex-
plained in terms of the anisotropy induced by loading in the subnetwork of
the sliding contacts.

Finally, we present a micromechanical investigation of the hysteretic re-
sponse when the granular samples are subjected to load-unload stress cy-
cles. We report on the existence of ratcheting regimes with a constant
accumulation of permanent deformation per cycle. At the grain level, we
have observed that some contacts reach almost periodically the sliding con-
dition even for extremely small loading amplitudes. The ratchetlike behav-
ior of these contacts produces a net displacement per cycle of the hysteretic
stress-strain loop leading to an overall ratcheting response.

The most salient aspect of this ratcheting behavior is that it excludes the
existence of a purely elastic regime. In fact, we found that as the loading
amplitude decreases, the transition from the ratcheting to the shakedown
response is rather smooth, which does not allow us to distinguish an elas-
tic regime. A micromechanic inspection of the cyclic loading response
has shown that any load involves sliding contacts, and hence, plastic de-
formation. Experimental studies on dry sand seem to show that the truly
elastic region is probably extremely small. The elastic region that is used
in Drucker-Prager theories in the modeling of soils seems to be a prag-
matic compromise which helps to give a dependence of response on recent
history, but is not a necessary feature.

In summary, two important conclusions can be drawn from the analysis of
the quasistatic mechanical response of the polygonal samples:

• The calculation of the incremental stress-strain relation leads to
two well defined tensorial zones.

• It is not possible to define a finite region in the stress space where
only elastic deformations are possible.
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These two conclusions appear to contradict both the Drucker-Prager theory
and the hypoplastic models. In future work, it would be important to revisit
the question of the incremental nonlinearity of soils from micromechanical
considerations.

8.1 Outlook

In 1986 Dafalias introduced the concept of hypoplasticity [77]. This de-
velopment was motivated by the necessity to describe the hysteretic re-
sponse of soils under cyclic loading. Dafalias has shown that shrinking the
elastic regime to the current stress point, one can reproduce the observed
continuous transition from the elastic to the elasto-plastic behavior. This
limit leads to a constitutive relation in terms of the bounding surface and
some internal variables, which are the macromechanical manifestation of
the material microstructure.

Following a different approach, Kolymbas [16] and Chambon [70] intro-
duced a new concept of hypoplasticity, based on a historic independent,
nonlinear incremental relations. Subsequent improvements have intro-
duced certain tensorial quantities, which take into account the dependence
of the mechanic response with the history of the deformation [99, 100].

Despite that these formulations are completely different, they seem to con-
verge at the same point: the necessity to introduce internal variables to
describe the essential feature of mechanics of granular materials, that any
loading involves plastic deformation.

Most of the attempts to identify the internal variables of the constitutive
relation have been based on observations of the response of soil samples in
conventional tests [1]. The recent improvements in discrete element mod-
eling (DEM) allow one to perform this investigation from the microme-
chanical point of view. We are in condition to develop a micromechanical
models giving the internal variables of the constitutive models in terms of
the microstructural information, such as polydispersity of the grains, fabric
coefficients, and force distributions.

To start the micromechanical investigation of those internal variables, it



126 8.1 Outlook

would be necessary to introduce an explicit relation between the incre-
mental stress-strain relation and some statistics measuring the anisotropy
of the contact network and the fluctuations of the contact forces. One way
to do that is to introduce the statistic distribution Ω(`, ϕ, f) of the microme-
chanical variables. Here ` and ϕ are the magnitude and the orientation of
the vector connecting the center of mass of the grain with the point of ap-
plication of the contact force f . In the most general case, the incremental
stress-strain relation can be given by

dσij =

∫

λ

dλΩ(λ)Rijkl(λ)dεkl. (8.1)

Here λ = (`, ϕ, fn, ft) and Rijkl is a tensorial quantity, taking into account
the local fluctuations of the deformation at the contacts with respect to the
principal value of the averaged incremental strain tensor dε [113]. Note
that the marginal distribution of Ω contains the basic statistics which have
been intensively investigated in the microstructure of granular material:
the size distribution Ω(`) [35, 53, 114], anisotropy of the contact network
Ω(ϕ) [3–6] and the contact force distribution Ω(f) [7, 8, 75, 115]. A great
challenge is to find explicit expressions for the incremental stress-strain re-
sponse in terms of internal variables, given as a function of this distribution
Ω. This investigation would be an extension of the ideas which have been
proposed to relate the fabric tensor to the constitutive relation [3–6, 82].

The traditional fabric tensor, measuring the distribution of the orientation
of the contacts, cannot fulfill a complete micromechanical description, be-
cause it does not make a distinction between elastic and sliding contacts
[4]. New structure tensors, taking into account the statistics of the subnet-
work of the sliding contacts, must be introduced to give a micromechanical
basis to the plastic deformation. The identification of these internal vari-
ables, the determination of their evolution equations, and their connection
with the macroscopic variables would be a key step in the development of
an appropriate continuous description of granular materials.

The evolution equation for these internal variables could be determined
from the evolution equation of Ω during loading. This can be obtained
from the conservation equations of the contacts [116]:
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∂Ω

∂t
+
∂(Ωvi)

∂λi
= Q(λ). (8.2)

The velocity field v(λ) = dλ/dt can be investigated from DEM by follow-
ing the evolution of the contacts during the simulation. The source term Q
takes into account the contacts arising or disappearing during the deforma-
tion of the granular assembly, as a consequence of the rearrangement of the
granular skeleton and the eventual fragmentation of the grains. In future
work, an important goal would be to determine the role of such microme-
chanical rearrangements in the overall mechanical response of granular
materials.

Let’s conclude remarking that the statistical mechanics has been one of the
most fundamental and successful theories of the matter. It allows one to
explain many thermodynamic aspects of solids, liquids and gases from mi-
croscopic physical laws. Contrary to this, different statistical mechanical
approaches intending to provide a micromechanical basis to the complex
mechanical response of granular material have given few satisfactory re-
sults. In the author’s opinion, a real advance in this field could be made
by contending that granular materials belong to a new class of materials,
which require their own theoretical framework. We attempted here to de-
lineate a rigorous framework in order to derivate the incremental response
of soils from strictly micromechanical considerations.
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