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Q-Gaussian diffusion in stock markets
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We analyze the Standard & Poor’s 500 stock market index from the past 22 years. The probability density 
function of price returns exhibits two well-distinguished regimes with self-similar structure: the first one 
displays strong superdiffusion together with short-time correlations and the second one corresponds to weak 
superdiffusion with weak time correlations. Both regimes are well described by q-Gaussian distributions. The 
porous media equation—a special case of the Tsallis-Bukman equation—is used to derive the governing equation 
for these regimes and the Black-Scholes diffusion coefficient is explicitly obtained from the governing equation.

Price fluctuations in stock markets exhibit remarkable fea-
tures such as strong short-time correlations, weak long-time
correlations, power law tails, and slow convergence to the
normal distribution [1]. In the earliest stock market model,
Bachelier proposed classical Brownian motion to represent
price fluctuations whose description has been a landmark
of research [2,3]. This model was the cornerstone for the
well-established Black-Scholes equations for stock markets.
Mandelbrot suggested that classical diffusion was not appro-
priate for modeling real stock markets [4]. His conclusion
was based on the analysis of price variations of the cotton
index whose probability density function (PDF) was better
described by a Lévy distribution. Later, Mantegna and Stanley
proposed that this Lévy distribution should be truncated to
achieve consistency with the slow convergence to normality,
and to guarantee that the standard deviation of price variations
remains finite [5]. Most recent developments display corre-
lations and PDFs obeying q-Gaussian distribution on price
increments of the NASDAQ [6] and Dow Jones indexes [7].
Consequently, the q-Gaussian distribution—an extension of
the Gaussian distribution for correlated fluctuations—is more
appropriate to account for the correlations of simple price
increments [8] or log price increments [6,9–11]. The time
correlations lead to anomalous diffusion, a phenomenon that
is pervasive in strongly correlated classical systems, such as
silo discharge [12] and velocity fluctuation in granulence of
sheared granular flow [13]. Modifications to classical models
have been proposed by the maximization of Tsallis entropy
[6,10] to capture the features of price fluctuations. Examples
are the stochastic processes with statistical feedback [6],
the generalized autoregressive conditional heteroskedasticity
(GARCH) algorithm [8], and the superstatistical approach
with time scales for short and large return periods [9,11].
These approaches are based on q-Gaussian distribution to
describe price return behavior.
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In this paper we have analyzed the Standard & Poor’s 500
(S&P500) stock market data during the 22 year period from
January 1996 to May 2018, with an interval span of 1 min.
The stock market index at time t is denoted by I (t ). The price
return in a time interval from t0 to t is defined by

X (t, t0) = I (t0 + t ) − I (t0). (1)

The stock market index fluctuates over time in a random
fashion. The main interest of economists is to predict the
price return at any future time t0 + t . Here we adopt the
probabilistic approach: we assume that the price return X is
a random variable with probability density function (PDF)
PX (x, t ). Then we formulate the governing equation for this
distribution. The standard diffusion process is an oversimpli-
fication, as the price fluctuations strongly correlate for times
of the order of minutes, and they weakly correlate for longer
times [14]. A candidate for such a distribution function is the
q-Gaussian distribution. The q-Gaussian is a generalization of
the Gaussian distribution and is defined as [15]

gq(x, β ) =
√

β

Cq
eq(−βx2), (2)

where eq(x) = [1 + (1 − q)x]
1

1−q is the q-exponential func-
tion. For q > 1, the q-Gaussian has asymptotic heavy-tail
power law given by gq ∼ 1/x2/(q−1). The “q-Gauss” is a
special case of q-Gaussian distribution defined as gq(x) =
gq(x, β = 1). The exponential and Gaussian functions can
be recovered by taking the limit q → 1. For 1 < q < 3, the
normalizing constant Cq is given by

Cq =
√

π

q − 1

�
( 3−q

2(q−1)

)
�

(
1

q−1

) . (3)

The so-called q-central limit theorem states that the q-
Gaussian is the limit of the distributions of specially correlated
random processes [16]. Thus it is reasonable to propose
the q-Gaussian as a candidate to fit the PDF distribution
of stock markets. With this aim, we construct the PDF of
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FIG. 1. (a) Time evolution of the PDF of price return. Initially the PDF has a pronounced bump in the center that fully disappears close to
78 min. (b) The time evolution of the height of the PDF. Two well-defined power laws are observed. (c) From (a) for the first hour analysis,
time increases from top to bottom. The ends of the bump are obtained from the two points at the PDF with abrupt change of slope. These points
correspond to a transition from strong to weak superdiffusion. (d) The circles represent the end points plotted against time that are fitted in (e)
by the power law x = ±a(t/to)ν , with a = (3.39 ± 0.01) × 10−2, to = 1 min, and ν = 0.62 ± 0.05. This curve and the line t = 35 min (red
dotted line) define the strong superdiffusion regime (zone A). The bump disappears completely at t = 78 min (blue dashed line). The remaining
area corresponds to the weak superdiffusion regime (zone C). The crossover regime (zone B) is limited by the curve and 35 min < t < 78 min.
In this regime the bump still has not dissipated but experiences a transition from strong to weak superdiffusion.

the S&P500 stock market index using the kernel density
estimator. The bandwidth of the kernel is set to h = 0.005
which is small enough to capture the nontrivial structure of
the PDFs. Figures 1(a) and 1(b) show the time evolution of
the PDF and its height from 1 min to 24 h of active market
time. The initial distribution at t = 1 min consists of heavy
tails and a pronounced bump at the center. This bump is easily
distinguished from the rest of the distribution by an abrupt
change of the slope of the distribution; see Fig. 1(c). The
points where the abrupt change of the slope occurs are plotted
against the time in Figs. 1(d) and 1(e). These points define
the top and bottom boundary of what we called the domain of
the bump. As time evolves, the bump diffuses and completely
disappears after 78 min.

As shown in Fig. 1(b), the time variation of the height of
the bump obeys a power law with exponent Pmax ∼ t−1/α with
α = 1.26 ± 0.04 in the strong superdiffusion regime. This
is different from the exponent α = 2 expected in classical
diffusion processes. Between t = 38 min and t = 78 min,
we observe a crossover region. The end of the crossover
corresponds to the region where the bump fully disappears,

which is shown in Figs. 1(d) and 1(e). After the end of the
crossover, the new height of the distribution obeys a different
power law with exponent α = 1.79 ± 0.01, which is closer to
the exponent of classical diffusion. Mantegna and Stanley’s
analysis on a more limited data set of the S&P500 index led
to the exponent α = 1.40 ± 0.05 [17]. This is in reasonable
agreement with our exponents, considering that they used a
single exponent to fit the entire time evolution of the height.

Based on the domain of the bump and the time evolution
of the height of the PDF, we partition the two-dimensional
space (price and time) into three zones as shown in Fig. 1(d):
zone A is the domain of the bump where the power law holds,
zone B is the area of the bump’s domain where the power law
smoothly changes to another power law, and zone C is the
remaining space. In zones A and C we propose a self-similar
distribution given by

P(x, t ) = 1

(Dt )
1
α

f

(
x

(Dt )
1
α

)
, (4)

where f (x) is a normalized distribution. The exponent α

defines the diffusion process as follows. The second moment
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FIG. 2. Collapse of the PDFs of the weak superdiffusion regime
(zone C). The exponent used for the collapse is α = 1.79 ± 0.01.
The collapse data is fitted by a q-Gauss (red line) with exponent
q = 1.71 ± 0.01 and D = 0.1118 ± 0.005 min−1. Both exponents
are related by Eq. (10).

of the distribution in Eq. (4) is 〈x2〉 ∼ tμ, where μ = 2/α

and it is known as the Tsallis diffusion exponent [18]. Then
α < 2 corresponds to superdiffusion, whereas α > 2 leads
to subdiffusion. The exponent α scales the height of the
distribution as Pmax ∼ t−1/α as the previous fitting in Fig. 1(b).
The present favorite alternative is f (x) = Lα (x) the Lévy
distribution, as proposed by Mandelbrot [4], and Mantegna
and Stanley [17]. They obtained α = 1.4 as a fitted param-
eter, indicating superdiffusion. Here we propose a different
approach by seeking a self-similar fitting for both the weak
and strong superdiffusion regime using the q-Gauss function
f (x) = gq(x) in Eq. (4). In both models the classical diffusion
can be recovered by taking α = 2 and g(x) = g1(x) = L2(x).
This limit corresponds to the self-similar solution of the
diffusion equation that does not fit well to the stock market
data.

The self-similar fitting in zones A and C is performed as
follows. First we fit each PDF to Eq. (2) using q and β as fitted
parameters. We evaluate the time dependence of the fitting
parameters. For each zone, we found that q is approximately
constant while β follows a power law relation that is written
as β = (Dt )−2/α , where D and α are fitting parameters of this
power law. Then, we collapse the PDFs for both weak and
strong superdiffusion, as shown in Figs. 2 and 3.

To collapse the PDFs in the weak superdiffusion regime—
zone C in Fig. 1(d)—we use the data from t = 1 min to
t = 3000 min. The data is detrended by subtracting from the
time series the average value within a time window of one
month. This removes the effect of the drift on the PDF. We
obtain an excellent agreement for the collapsed data with the
q-Gauss distribution [Eq. (2) with β = 1]. The q-exponent in
this regime is q = 1.72 ± 0.03, which is larger than the value
q = 1 expected for uncorrelated random processes. This is
consistent with the weak correlation of the price fluctuations
in this regime that is given by an autocorrelation of price
fluctuating around 0.1%. The exponent α = 1.79 ± 0.01 is
the same as the one calculated in Fig. 1(b) and is lower than
the value of 2 expected for classic diffusion. The collapse
of the PDFs in the strong superdiffusion regime—zone A in

FIG. 3. Collapse of the PDFs of the strong superdiffusion regime
(zone A). The exponent used for the collapse is α = 1.26 ± 0.04 and
D = (4.8 ± 0.2) × 10−3 min−1. The collapse data is fitted by a q-
Gauss (red line) with exponent q = 2.73 ± 0.005.

Fig. 1(d)—is shown in Fig. 3 like in the weak superdiffu-
sion case; the collapse fits well to the q-Gauss distribution.
However, in this case the exponent q = 2.73 ± 0.005 is larger
and α = 1.26 ± 0.04 is lower than the exponents in the weak
superdiffusion regime. This indicates stronger deviation from
classical diffusion. As in the previous case, these exponents
should be considered as independent exponents. Note that in
Fig. 3 we collapse only the bump of the distribution, while
its tail is fitted in Fig. 2 because it belongs to the weak
superdiffusion regime (zone C).

Next we construct the evolution equation of the PDF based
on the q-Gaussian fitting. It is natural to relate the superdiffu-
sion processes with a well-known anomalous diffusion model,
which is given by a nonlinear Fokker-Planck equation [6], also
known as the porous media equation [18]:

∂u

∂t
= ∂2um

∂x2
. (5)

The Barenblatt solution of Eq. (5) for m < 2 and t > 0 is
given by [19]

um(x, t ) = 1

t
1

m+1

(
C + m − 1

2m(m + 1)

x2

t
2

m+1

) 1
m−1

, (6)

where C is an integration constant. There is only one exponent
in Eq. (5), while we have two independent exponents α and
q in the fitting of the collapsed data (see Figs. 2 and 3). An
additional exponent ξ is introduced and proposing m = 2 − q
we write

P(x, t ) = u2−q(x, τ ), τ = (Bt )ξ . (7)

The scale parameter B is obtained as follows. By placing
Eq. (7) into Eq. (6) we obtain

P(x, t ) = 1

(Bt )
ξ

3−q

(
C − 1 − q

2(2 − q)(3 − q)

x2

(Bt )
2ξ

3−q

) 1
1−q

.

This equation can be written as

P(x, t ) = 1

Cq(Dt )
1
α

(
1 − (1 − q)

x2

(Dt )
2
α

) 1
1−q

, (8)
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FIG. 4. Time evolution of the second moment of the full PDF of
the S&P500 index. The data is compared to the best fitting and the
linear fitting that corresponds to classical diffusion. The zones where
the integration is performed are also shown.

in which Cq is the normalization constant in Eq. (3). The B
and C values are related to D and Cq by

Cq = B
1
α C

1
q−1 D− 1

α , D = B[2C(2 − q)(3 − q)]α/2, (9)

and ξ is calculated in terms of α and q by

ξ = 3 − q

α
. (10)

The parameters α, q, and D are derived by fitting the collapse
data. Equation (8) corresponds to Eq. (4) with f (x) = gq(x)
defined by Eq. (2). Finally, the governing equation of P(x, t )
is obtained by first taking the partial time derivative in Eq. (7)

∂P

∂t
= ∂P

∂τ

∂τ

∂t
= ∂u2−q

∂t
(Bt )ξ−1ξB. (11)

Placing Eq. (11) into Eq. (5) the governing equation is ob-
tained:

t1−ξ ∂P

∂t
= ξDξ ∂2P2−q

∂x2
. (12)

Equation (12) is of great importance as it is the evolution
equation of the distribution of price returns of the S&P500
index. The parameters q, ξ , and D take different values
depending on whether we are in the weak or strong superdiffu-
sion regime. Equation (12) constitutes a particular case of the
Tsallis-Bukman scaling law when ξ = 1 [20] (corresponding
to the case μ = 1 and ν = 2 − q for the symbols used in the
original paper of Tsallis and Bukman). The variable x scales
like t ξ/(3−q) from Eq. (8). Analogous to the Tsallis-Bukman

law, the second moment is 〈x〉2 ∝ t
2ξ

3−q for the anomalous
diffusion case [13]. By using Eq. (10) we obtain 〈x〉 ∝ t

2
α ,

which matches the second moment display on Fig. 4. Also,
Eq. (12) reflects a distinct feature of stock markets, namely
that the diffusion coefficient depends on the diffused quantity
itself, a feature that is observed also in many biological and
physical systems [21,22]. Then, the Black-Scholes coefficient
of diffusion can be calculated by comparing Eq. (12) to the
linear Fokker-Planck equation ∂P

∂t = ∂2(D2P)
∂x2 [1]. The direct

comparison leads to D2 = ξDξ P1−qt ξ−1. Replacing Eqs. (8)
and (10) into this equation we obtain an explicit expression
for the coefficient of diffusion:

D2(x, t ) = (3 − q)D
2
α

αC1−q
q t

α−2
α

(
1 − (1 − q)

x2

(Dt )
2
α

)
. (13)

For a fixed time and large price fluctuations, the scaling D2 ∼
x2 of the Black-Scholes equation for geometric Brownian
motion is recovered [1]. Our extension introduces the power
law dependency with time into this relation that accounts for
superdiffusion.

The strong superdiffusion regime occurs in a very small
zone in the phase space, so that it only contributes to the
moments of the PDF distributions to a small extent. We char-
acterize the global diffusion by plotting the second moment
of the full PDF as a function of time, and fitting it to the best
power law. The result is shown in Fig. 4. The second moment
is almost linear with time, suggesting that the global diffusion
is weakly superdiffusive.

We have identified two regimes in the time evolution of the
PDFs of the price return of the S&P500 index that account for
strong and weak superdiffusion. Both regimes are described
by the family of self-similar q-Gaussian distributions that
accurately capture the tail distributions, needed for financial
risk estimates, by accounting for the strong superdiffusion
in the center of the distribution. The time evolution of the
PDF is consistent with the central limit theorem for correlated
fluctuations. The strong correlations in the short-time regime
are reflected in a strong superdiffusive q-Gaussian regime that
has not previously been reported and the weak correlation in
the long-time regime corresponds to the weak superdiffusive
q-Gaussian regime. These regimes become evident only after
the analysis of high-frequency data. We demonstrated that
these regimes are well described by a nonlinear Fokker Plank
equation that is used to obtain an explicit formula for the
Black-Scholes diffusion coefficient.
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