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Abstract
We use particle simulations to investigate the mass flow in two-dimensional hopper flow and to analyze the dependency of 
the flow rate with the bottleneck width and the particle diameter. A flow rate law is derived from self-similar velocity and 
density profiles at the neck. The resulting relation is an enhancement of the Beverloo relation that incorporates the depend-
ency of the density with the neck width. The parameters of the Beverloo relation are interpreted by coupling the hourglass 
theory with the free-fall arch theory using non-zero arch velocity as accounted by the hourglass theory.
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1 Introduction

The description of the two-dimensional flow of particles 
through bottlenecks has been instrumental in the understand-
ing of granular flow in conveyor belts [1], pedestrian flow 
[10], sheep flow [8], and flow of other complex biological 
entities [23]. Observations of the flow rate when the diam-
eter of the bottleneck is a few times the particle diameter 
have raised some questions about the applicability of the 
widely used Beverloo relation near the regime of intermit-
tent flow [11, 12, 14, 16].

For gravity-driven flow, the hourglass theory (HGT) has 
been used the explain the Beverloo relation [15].

The theory predicts that the mass flow rate scales with the 
diameter D of the exit as D5∕2 for three-dimensional hoppers. 
It is also concluded that the flow rate depends on the hopper 
angle � as sin1∕2 � which is consistent with experiments. On 
the other hand, the prediction of the dependency of flow rate 
on the neck diameter fails when the diameter is less than six 
times the diameter of the particles.

To solve the governing equations of the hourglass flow, 
the HGT borrows from the Free Fall Arch Concept (FFAC): 

there is a spherical free-fall arch where the radial stress van-
ishes; below the free-fall arch, the particles lose contact and 
accelerate freely by gravity [15]. Based on this concept, the 
Free-Fall Arch Theory (FFAT) has been developed [11, 16]. 
Recent micromechanical observations of the forces and dis-
placement of the grains near the exit provide some correc-
tions to this FFAC: particle image velocimetry analysis on 
the flow of bunkers (flat-bottom silos) shows self-similarity 
in both density and velocity profiles [11]. The analysis of the 
velocity profile with the FFAC suggests that the arch is not 
perfectly spherical but rather parabolic [11]. In more recent 
work, a detailed micromechanical analysis of the stress field 
concludes that there is not an arch region where the normal 
stress vanishes [16]. Instead, the free-fall arch is a parabolic 
curve where the kinetic stress peaks, while the self-similarity 
of the fields is fully justified.

In this paper, we investigate the self-similarity of the 
density and velocity profiles in hoppers (silos where walls 
converge towards exit). Using discrete element simulations 
of hopper flow, we recover self-similar profiles, although the 
observed arches are different from the ones in bunker flow 
[11]. The flow rate resulting from these profiles provides 
some corrections to the Beverloo relation near the clogging 
point. We propose a modification of the FFAC based on the 
assumption that the arch has non-zero velocity at the begin-
ning of free fall. The grain scale kinematic analysis provides 
a solid interpretation of the parameters used in this relation.

This paper is organized as follows: Sect. 2 presents the 
dimensional analysis and the numerical method used in this 
investigation. Section 3 reviews the hourglass theory using 
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numerical simulations. In Sects. 4 and 5 the self-similar den-
sity and velocity profiles are calculated, and they are used 
in Sect. 6 to obtain the Beverloo relations. Conclusions are 
presented in Sect. 7.

2  Analyses

We will focus on the mass flow rate in a two-dimensional 
hopper. The mass flow rate W is a function of the width of 
the neck D, particle diameter d, the half-angle of the hopper 
� , the gravity g, and the two bulk properties of the particu-
late material: bulk density �b and coefficient of friction �.

If one ignores the effect of particle size, dimensional 
analysis [15] leads to the simplest law

The Beverloo relation has been proposed [14] as an empiri-
cal formula that accounts for the particle diameter

We aim to use micromechanical data to derive a more gen-
eral law that includes particle size and provides a physical 
meaning of the parameters used. The observations are taken 
from simulations of circular particles in an hourglass-shaped 
hopper. The particles flow through the bottleneck due to 
gravity and the hopper is refilled using periodic boundary 
conditions. Error bars are calculated from four random sam-
ples. The interaction between particles includes elastic and 
viscous forces with a Blendel & Dippel sliding condition [5] 
already implemented for granular dynamic simulations [3].

The parameters of the contact model are: normal and tan-
gential contact stiffness kn [N/m] and kt [N/m], friction coef-
ficient � , and normal and tangential coefficients of viscosity 
�n [s −1 ] and �t [s−1 ]. The system parameters are particle den-
sity of �p [kg/m2 ], mean particle diameter d [m]. The driven 
acceleration is g [m/s2 ]. The mass flow rate depends on the 
above parameters, as well as the half angle of the hopper 
� and the neck diameter D. Using the standard method of 
dimensional analysis [7], we obtain the expression of the 
mass flow rate:

where W0 = m(g∕d)1∕2 , and the dimensionless input 
variables are the quality factor q = �0∕�n , stiffness ratio 
a = kt∕kn = �t∕�n , and overlap ratio � = m�0∕W0 , where 
�0 = (kn∕m)

1∕2 is the natural frequency at the contact and m 
is the particle mass. The overlap ratio should be low enough 
to allow time steps large enough for fast simulation, but high 
enough to avoid unrealistic overlap; the quality factor is cho-
sen to achieve a mild coefficient of restitution.

(1)Wda. = C(�, �)�b
√
gD3∕2.

(2)WBev. = C(�, �)�b
√
g(D − kd)3∕2.

(3)W∕W0 = f (�, �,D∕d, q, a, �),

The required set of the dimensional parameters to achieve 
a desired set of dimensionless parameters is not unique. Here 
the dimensional contact parameters have been tailored to 
achieve the desired balance between computational effi-
ciency and realistic interactions. The chosen dimensional 
parameters of the contact model are: normal and tangential 
contact stiffness kn = 1 × 106 N/m and kt = 1 × 105 N/m, 
friction coefficient � = 0.2 , and normal and tangential coef-
ficients of viscosity �n = 100 s −1 and �t = 10 s −1 . The values 
of the system parameters are particle density of �p = 100 kg/
m2 and mean particle diameter d = 0.3 m. These parameters 
lead to q = 3.76 that gives a restitution coefficient of 0.42 
[4]; a = 0.1 leads to a Poisson ratio of 0.3 for hexagonal 
packing [20]; overlap ratio � = 0.005 guarantees overlaps 
lower than 5% of the particle diameter. The driven accel-
eration is g = 1 m/s2 that corresponds to an experimental 
setup where the particles roll over a surface tilted by 5.7◦ . 
The neck is varied between D = 0.5 m and 4 m and the hop-
per half angle is fixed to � = 30◦ . Each simulation runs for 
34000tc , where tc = 2�∕�0 is the characteristic collision 
time. The system consists of particles with diameters ran-
domly generated between 0.93d and 1.06d, the number of 
particles is N = 3670 , which is enough to guarantee steady 
flow and a filling height larger than three times the neck 
diameter so that we can neglect the dependency of flow rate 
on filling height.

3  Hourglass theory

The main assumptions used by the HGT to predict the 
flow rate are: (1) There exists a circular arc at the bottle-
neck where radial stress vanishes; (2) The velocity is radial 
and independent of angular position; (3) the bulk density is 
homogeneous in the hopper.

An analytical solution for the mass flowrate has been pre-
sented by applying the HGT to narrow conical hoppers with 
frictionless walls [15]. We present here the derivation for 
narrow two-dimensional hoppers. The assumption on the 
narrow hopper is tan� ≈ � if |𝜙| < 𝜃 . For our case we have 
� = 30◦ so that the approximation is valid within an maxi-
mal error of 10%.

If the hopper’s walls are frictionless, the shear stress van-
ishes. We use a cylindrical coordinate system (r,�) centered 
in the apex of the hopper. The radial �r and azimuthal �� 
components of the stress are related by

where K is the earth pressure coefficient. The kinematic 
equations for the radial vr and azimuthal v� components of 
the velocity are derived from mass conservation and the 
assumption (2) of the HGT

(4)�� = K�r,
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The radial stress and the constant V can be evaluated using 
the Euler’s equation

Using Eqs. (4) and (5) and using the approximation cos� ≈ 1 
for narrow hoppers, this equation reduces to

This ordinary differential equation is solved using the 
boundary conditions:

These conditions state that the bottom ( r = r0 ) and the top 
( r = r1 ) of the granulate are free surfaces. The bottom sur-
face is the free-fall arch spanning from the edges of the neck. 
The solution for V is

The neck diameter is related to the arch radius by 
D∕2 = r0sin� . It is assumed that K > 2 and the filling height 
is much larger than the neck diameter so that r1 >> r0 . Then

Replacing this equation into Eq. (5) for r = ra we obtain an 
expression for the velocity at the free-fall arch

(5)vr = −V∕r, v� = 0.

(6)�bvr
dvr

dr
+

d�r

dr
+

�r − ��

r
+ �bgcos� = 0.

(7)
�bV

2

r3
+

d�r

dr
+

1 − K

r
�r + �bg = 0,

(8)�r(r0) = �r(r1) = 0.

(9)V2 = gr3
0

1 + K

K − 2

1 − (r1∕r0)
2−k

1 − (r1∕r0)
−1−k

.

(10)V =

√
1 + K

2(K − 2)

g1∕2D3∕2

sin
3∕2(�)

.

This result can be used to derive the mass flowrate that is 
calculated by integrating �pvr over the free-fall arch

Substituting Eq. (11) into Eq. (12) and using the approxima-
tion sin � ≈ � for narrow hoppers, we obtain an expression 
for the mass flowrate in terms of neck diameter and hopper 
angle

The HGT predicts the dependency of flow rate with the hop-
per angle by the factor sin−1∕2� that agrees with our previous 
simulations [3]. The flow rate is calculated from a non-zero 
arch velocity that scales with the neck diameter by D3∕2 in 
agreement with experimental data of granular flow when 
D >> d [11]. For small neck diameters this scaling law fails, 
and clogging is experienced [15]. Thus, a revision of the 
HGT is required to achieve a more general flow rate law.

The three main hypotheses of the HGT will be tested 
by analyzing the data of the interparticle contact network, 
the velocity field, and the volume fraction of the granular 
material.

We start testing assumption (1) of the HGT by inves-
tigating the contact forces between particles. The contact 
force network in Fig. 1a is characterized by an intermittent 
dynamics, due to the creation and destruction of arches 
above the exit. These arches lead to a strongly fluctuating 
stress well above the arches, while the material immedi-
ately below it is loose, and the stress vanishes. There is 

(11)va,HGT = vr(r0) =

√
1 + K

2(K − 2)

g1∕2D3∕2

sin
3∕2(�)

.

(12)WHGT = ∫
�

−�

�bva,HGT (rad�) = 2�b�V .

(13)WHGT =

√
1 + K

2(K − 2)

�bg
1∕2D3∕2

sin
1∕2(�)
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Fig. 1  a Contact network of the particles crossing the bottleneck. The 
thickness of the lines encodes the normal contact forces. b Trajectory 
of the particles. Each dot represents the center of mass of the particle 
and the dots are superposed for different time steps. c The streamlines 
of the averaged velocity field are obtained as follows: for each time, 

the velocity is interpolated onto a regular mesh using nearest-neigh-
bor interpolation; then the velocity field is averaged over time at each 
point of the regular mesh. Finally, the streamlines and the constant-
speed lines are obtained from this velocity field. d coarse-grained vol-
ume ratio taken from Eq. (14) averaged over time.
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no evidence of circular arches created at the exit as sug-
gested by the HGT. Instead, the arches are created above 
the exit and they come in different shapes and sizes. This 
observation is consistent with the analysis of the stresses 
by Rubio-Largo et al. [16] that show that the kinetic stress, 
when averaged over different time stamps, is a monotonic 
function of the height. However, their observation does 
not rule out the existence of free-fall arches that occur 
intermittently during the time.

The existence of free-fall arches is also supported by 
observations on the kinematics of the particles. In Fig. 1b we 
track the displacement of the particles. Well above the exit 
the particles organize in layers parallel to the hopper walls; 
the thickness of each layer is the diameter of the particles. 
When the layers collide above the exit, free-fall arches are 
created (Fig. 1a). When the arches break the particles are 
driven by gravity with little interaction between them.

Now we test assumption (2) of the HGT. Note that the 
HGT assumes that the velocity of the particles is radial 
before the free-fall arch, while the FFAT assumes that the 
particles just fall vertically due to gravity after the free-
fall arch. To test these hypotheses, we plot in Fig. 1c the 
streamlines and the lines of constant speed from the time-
average of the velocity field. In agreement with the HGT, 
the streamlines are radial well above the exit, but near to the 
exit they curve so that they become perpendicular to the exit 
as the FFAT states. We also note that the velocity field in 
Fig. 1c does not show any arch region where particles lose 
all kinetic energy and start free falling by gravity. To achieve 
consistency between both theories we need to depart from 
the classical FFAT assumption that the particles in the arch 
start with zero velocity.

From Fig. 1c we note that the lines of constant speed are 
not perpendicular to the streamlines, suggesting that the flow 
is compressible, i.e. bulk density is not homogeneous. This 
observation rules out the assumption (3) of the HGT. To 
investigate how the volume fraction changes as the particles 
approach the exit, we calculate the coarse-grained volume 
fraction as proposed by Goldhirsch [9],

where N is the number of particles, �i is the position 
of the i−particle, and �(�) is a Gaussian with vari-
ance d. The coarse-grained velocity can be calculated as 
�(�) = (�r2∕�(�))

∑N

i=1
mi�i�(� − �i) , which is the ratio 

between momentum and density. This calculation produces 
large errors near the walls where density vanishes. For this 
reason, we implement an alternative calculation of the veloc-
ity by nearest neighbor interpolation. For alternative meth-
ods to deal with coarse-grained calculations near bounda-
ries, see the paper of Weinhart et al [21].

(14)�(�) = �r2
N∑

i=1

�(� − �i),

The distribution of the volume ratio is shown in Fig. 1d. 
Well above the exit the volume fraction is above 0.83, which 
corresponds to the jamming threshold [13]. The volume 
fraction is reduced near the hopper walls as no particle can 
approach the wall closer than its radial distance. But this is 
not the main factor for the reduction of density; as the par-
ticles approach the exit the volume fraction decreases. This 
is consistent with the loosening of the packing when the 
arches break. Thus, an extension of the HGT must consider 
both bulk density and particle velocity as field variables to 
be solved using mass and moment conservation equations. 
As an alternative approach, we investigate the density and 
velocity profiles at the neck and use the FFAT to construct 
self-similar profiles and to interpret the resulting mass flow 
relation.

4  Density profiles

If we assume that the span at which the free-fall arch breaks 
scales as D, then the density profile should also scale with 
D. To test this hypothesis, we plot the profile of volume frac-
tion along the exit for different apertures in Fig. 2a. When 
the profiles are rescaled with the exit radius R = D∕2 , all 
of them collapse into the same curve as shown in Fig. 2b:

where 1∕� = 0.2 ± 0.02 and the factor �c depends on the 
radius as shown the Fig. 2c. The data suggests an exponen-
tial saturation for large apertures that can be fitted by the 
Janda’s equation for bunker flow [11].

The fitted parameters are shown in Table 1. It is interesting 
that the parameters are very close to the ones obtained by 
recent experiments and simulations on bunker flow [11, 22]. 
This consistency may suggest that the self-similar density 
profile is either universal or it does not depend on the details 
such as the geometry of the bottleneck or the way the clog-
ging may be prevented.

5  Velocity profiles

Now we analyze the velocity profiles for different outlet 
widths shown in Fig. 3. Similar to the experiments on bunker 
flow [11], the shape of the profile does not depend on bottle-
neck width. Yet there are subtle differences in the observed 
profile: In bunker flow, the velocity profiles are assumed to 
reach zero at the edges of the exit, while our profiles reach a 
finite value that scales with the bottleneck width. Also, the 

(15)�(x) = �c(1 − (x∕R)2)1∕� ,

(16)�c = �∞(1 − �1e
−

D

d�2 ).
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slope of our velocity profiles is slightly reduced at the edges, 
which may be related to the effect of the particles that roll 
over the hopper before exiting. In spite of these differences, 
our profiles can still be approximated by parabolic profiles.

To interpret the self-similar profiles of the velocity, we 
propose slight modifications to the FFAT based on two 
physical arguments: (1) The assumption of a free-fall arch 
with parabolic shape and non-zero initial velocity, (2) The 

presumption that particles do not dissipate mechanical 
energy after the arch breaks. We introduce the free-fall arch 
as a function y(x) shown in Fig. 4. While the HGT suggests 
that the arch has circular shape, we assume that the arch 
has a parabolic shape, which is similar to the experimental 
observation of Janda et. al. on granular flow [11].

where R = D∕2 is half of the neck diameter and y0 and h 
account for the position and the height of the arch as shown 
in Fig. 4. We adopt the previous observation that the stream-
lines enter perpendicular to the edges so that the velocity 
of the particles exiting the exit is almost vertical. We also 
consider that the velocity at the arch is non-zero before it 
breaks. The mechanical energy of the particle with mass m 
in the arch is 1

2
mv2

a
+ mgy(x) where va is the arch velocity 

that is assumed to be constant along the arch. The mechani-
cal energy of the same particle when it crosses the neck is 
1

2
m[v(x)]2 . Now we assume that in the region between the 

arch and the exit, the particles either roll over the hopper 

(17)y(x) = y0 − h(x∕R)2,

Fig. 2  a Volume fraction versus position at the exit for different 
apertures. The solid lines are the curve fits using Eq. (15). b Nor-
malized volume fraction versus normalized position. The solid line 

is y(x) = (1 − x2)5 (c) Maximal volume fraction versus aperture, the 
solid line represents the exponential fit, Eq. (16)

Table 1  Fitting parameter of density profile from our hopper flow 
simulation, and comparison with experiments [11] and simula-
tions [22] of granular bunker flow. The volume fraction is retrieved 
from [22] assuming the bulk volume ratio of the hexagonal disk pack-
ing of 0.9

Parameter Hopper flow Bunker flow 
experiments

Bunker flow 
simulations

1∕� 0.20 ± 0.02 0.22 0.19 ± 0.1

�∞ 0.79 ± 0.01 0.83 ± 0.01 0.80
�
1

0.39 ± 0.004 0.50 ± 0.01 0.45
�
2

6.45 ± 0.5 6.6 ± 0.1 7.7

Fig. 3  a Velocity versus position at the exit for different apertures. 
The solid lines are the curve fits using Eqs. (19) and (20). b Normal-
ized head of the arch versus normalized position. The normalized 
head is defined as h∗ = (H − Hmin)∕h , where H = v2∕(2g) and Hmin 

and h are the best fits using Eq. (20). The self-similar profile (solid 
line) is h∗(x) = 1 − x2 . c Arch descriptors versus neck width. The 
solid lines represent the best linear fit of Hmin , h, and Hmax = Hmin + h 
using Eq. (21)
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or experience free fall so that the energy dissipation is neg-
ligible there. Then the velocity of the particle at the exit is 
calculated using energy conservation:

For the sake of simplification of the analysis and comparison 
with previous work on bunker flow [11], we introduce the 
fluid dynamics concept of kinetic head:

This quantity will be decomposed to account for both arch 
height and arch velocity on the velocity profile at the neck 
as follows: Replacing Eqs. (17) and (18) into this equation 
we obtain the kinetic head at the neck:

where Hmin = ha + hmin is the kinetic head at the end of the 
neck that is the sum of the kinetic head due to the elevation 
of the arch hmin = y0 − h and the kinetic head due to the ini-
tial velocity of the arch ha = va∕(2g) . Note that at the ends of 
the neck ( x = R ), the minimal kinetic head is H = Hmin and 
hence, due to Eq. (19), the velocity at the ends of the neck 
is not necessarily zero. Non-zero velocities at the end of the 
neck are also observed in the granular flow experiments of 
Janda et al. [11] but they are small and can be neglected for 
bunker flow. In our simulations of hopper flow, the velocity 
at the ends is not negligible and we need to take this into 

(18)
1

2
m[v(x)]2 =

1

2
mv2

a
+ mgy(x).

(19)H(x) =
[v(x)]2

2g
.

(20)H(x) = Hmin + h[1 − (x∕R)2],

account. This necessitates an increase in the number of fit-
ting parameters of our model.

We use Eq. (20) to construct self-similar profiles of the 
normalised kinetic head h∗ = (H − Hmin)∕h that collapse to 
the curve h∗(x) = 1 − x2 , see Fig. 3b. Figure 3c shows an 
excellent fit for the dependency of Hmin and h on bottleneck 
width that is given by

where the ramp function is defined as Θ(x) = x if x > 0 or 
zero otherwise. The fitting parameters are �m = 0.6 ± 0.1 , 
� = 1.54 ± 0.1 and k = 3.0 ± 0.2 . This contrasts to the single 
fitting parameter � = 1.07 required in bunker flow analy-
sis [11]. The height of the arches is a linear relation with 
the diameter shifted by kd. The factor k appears also in the 
Beverloo relation to describe the shift of the power-law rela-
tion between mass flow rate and the neck width [15]. In the 
HGT, this shift is mistakenly attributed to the effect of the 
empty annulus – a hypothetical region near the edges of the 
exit where the density, and hence the flow rate is strongly 
reduced [6]. In contradiction to this hypothesis, the param-
eter k in our simulations is directly related to the velocity 
field and not the density profile. In our simulations, we need 
a minimum of three particles to create a metastable free-fall 
arch that can be broken by the agitation of the incoming 
particles. If the diameter of the exit is smaller than three-par-
ticle diameters, highly stable arches are eventually created 
and therefore the velocity is vanishingly small. However, this 
variable should not be related to a clogging transition. As in 
the concept of empty annulus, the existence of a clogging 
transition is still debatable in the literature. In our paper, the 
onset of clogging is at three-particle diameters, while other 
papers report clogging at 6–8 particle diameters. Clogging 
depends on the nature of the contact interaction, and in par-
ticular on the friction coefficient [19]. Clogging also appears 
at higher neck widths for non-convex particles [2]. Besides, 
detailed experimental observations prove that there is not 
sharp clogging transitions but all hoppers have a non-zero 
probability to clog [17, 18].

Let us compare our results with experiments on granular 
bunker flow. The original FFAT assumes that the arch is 
spherical with no initial velocity, thus Hmin = 0 and h = R . 
Experiments on granular bunker flow proposed a correction 
of the parabolic arch so that h = �R with � = 1.07 [11]. From 
Eq. (21) we obtain a non-zero Hmin = �m(R − kr) where r 
is the particle radius. In addition, the height of the arch is 
corrected by h = �(R − kr) . The fitted value of � = 1.54 
indicates that the deviation from the spherical arch shape 
is of 54% – much larger than the 7% deviation from bunker 
flow. The main results from the classical and modified FFAT 
analysis are presented in Table 2.

(21)
Hmin

�m
=

h

�
= Θ(D − kd),

va

v( )x

0y
h

2R

Fig. 4  The free-fall arch is approximated by a parabolic shape 
y(x) = y

0
− h(x∕R)2 where R = D∕2 . The scalar quantity va is the ini-

tial radial velocity of the arch and the scalar function v(x) is the verti-
cal velocity at the neck
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6  Beverloo relation

Now we will use the above results to construct the modi-
fied Beverloo formula for flow rate. Since the flow is sta-
tionary, the mass flow rate is obtained by integrating over 
the neck

The volume fraction � is calculated from Eqs. (15) and (16) 
and the velocity profile v results from the Eqs. (19), (20) 
and (21):

Replacing Eqs. (23) and into (22) we obtain the expression 
for the mass flow rate for D > kd:

where C =
√
2 ∫ 1

0
(1 − t2)1∕�(�m + �t2)1∕2dt and the bulk 

density is given by �b(D) = �p�∞(1 − �1e
−

D

d�2 ) . Our flow 
rate equation is similar to the Beverloo relation given by Eq. 
(2). Both equations are applicable for D ≤ kd and zero flow 
rate is assumed when D < kd . In the limit D∕d → ∞ , both 
equations converge to the equation derived from dimensional 
analysis (Eq. (1)).

Figure 5 shows the numerical data and the best fits 
using the three models. The flow rate is first calculated 
from the simulations by counting the particles crossing 
the periodic boundary conditions. The data is then fitted 
with our model given by Eq. (24) and the Beverloo model 
given by Eq. (2). Both models provide a reasonable fit to 
the data but there are subtle differences: While the Bever-
loo curve is smooth, our curve has a discontinuity in the 
derivative of the flow rate at D = kd . This discontinuity 
defines the critical neck width below which the particles 
start clogging. While the Beverloo relation is fully empiri-
cal, the parameters of our model can be interpreted from 
the self-similar density and velocity profile.

(22)W = ∫
D∕2

−D∕2

�p�(x)v(x)dx.

(23)
�(x) = �∞(1 − �1e

−D∕d�2)(1 − (x∕R)2)1∕� ,

v(x) = [2gΘ(D − kd)(�m + �(x∕R)2)]1∕2.

(24)W = C�b(D)
√
gD(D − kd)1∕2,

7  Conclusions

We derived the Beverloo relation for hopper flow from 
self-similar velocity and density profiles. The self-similar 
analysis proved to be valid from both bunker flow and hop-
per flow. The density profiles seem to obey a universal law 
in both cases, and the kinetic head profile can be reason-
ably adjusted to a parabolic profile. The velocity profile is 
calculated in terms of the position, velocity, and height of 
the free-fall arch. We extend the classical FFAT theory by 
introducing a correction that accounts for the initial velocity 
of the arch and the position of the base of the arch.

The new Beverloo relation is constructed based on three 
physical arguments: (1) The existence of a universal self-
similar density profile, (2) the presumption of a free-fall 
arch with a parabolic shape and non-zero initial velocity, 
and (3) the assumption that the particles convey to the exit 
with negligible dissipation after the arch breaks.The analysis 
of the velocity profiles is characterized by three parameters 
� , �m , and k. This contrasts with the single parameter � used 
in bunker flow. This is reasonable since the hopper flow has 
two additional parameters: the hopper angle as a geomet-
ric parameter, and the particle-wall friction as a material 
parameter.

Including a robust Beverloo relation for the mass flow 
requires an in-depth revision of the HGT and FFAT based on 
a larger set of numerical and experimental data that should 
include the effect of hopper angle, particle polydispersity, 
and particle shape. We anticipate that increasing polydis-
persity will remove the effect of crystallization, and varying 
the friction coefficient, hopper angle, and particle shape may 
lead to different flow regimes.
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Table 2  Comparison of results for kinetic head and velocity from dif-
ferent FFAT models

The last one is our model where �(R) = �(R − kr)

Model h H
max

v(0) v(R)

Classical [15] R 0
√
2gR 0

Janda et al. [11] �R 0
√
2�gR 0

This paper ��(R) �
m
�(R)

√
2�g�(R)

√
2�

m
g�(R)

Fig. 5  Mass flow rate versus neck width and best fit with the Bever-
loo relation, our model, and dimensional analysis. The normalizing 
factor is W

0
= m(g∕d)1∕2
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