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The Lévy-stable distribution is the attractor of distributions which hold power laws with infinite variance.
This distribution has been used in a variety of research areas; for example, in economics it is used to model
financial market fluctuations and in statistical mechanics it is used as a numerical solution of fractional kinetic
equations of anomalous transport. This function does not have an explicit expression and no uniform solution
has been proposed yet. This paper presents a uniform analytical approximation for the Lévy-stable distribution
based on matching power series expansions. For this solution, the trans-stable function is defined as an auxiliary
function which removes the numerical issues of the calculations of the Lévy-stable distribution. Then, the uniform
solution is proposed as a result of an asymptotic matching between two types of approximations called “the inner
solution” and “the outer solution.” Finally, the results of analytical approximation are compared to the numerical
results of the Lévy-stable distribution function, making this uniform solution valid to be applied as an analytical
approximation.
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I. INTRODUCTION

A wide range of natural and social phenomena exhibit
a power law in the probability distribution of large events.
These tails are characterized by the asymptotic relation f (x) ∼
1/x1+α , where x is the size of the events [1,2]. For 0 < α � 1,
the distribution has an indefinite mean value. On the other
hand, for 1 < α � 2, the distribution has a defined mean
value but still exhibits infinite variance [3]. These heavy-tailed
distributions have been observed in economics and statistical
mechanics.

In the field of economics, the statistics of price returns, trade
size, and share volumes have been investigated. Heavy-tailed
distributions have been observed in the correlations of the abso-
lute value of the S&P 500 returns [4,5], the effects of networks
on price returns [6], daily returns of the Dow Jones index [7],
Brent crude oil returns [8], and the aggregate output growth rate
distribution [9]. Even after applying five different estimation
techniques, power-law tails with the characteristic index α

were found on the cumulative distribution of trade size and
share volumes of 252 U.S. stocks over the 42-year period from
1963 to 2005 [10,11]. To capture heavy tails different models
have been proposed to simulate the stock price dynamics. For
instance, models of anomalous diffusion of option pricing were
introduced as an extension of the well-known Brownian model
[12,13]. These models are focused on different aspects such as
capturing the dynamic of the price with waiting times (periods
of stagnation) which are Lévy-stable distributed [12] or on the
effect of “particles” representing an agent’s interaction [13].
The continuous counterpart of these discrete models is the
Fokker-Planck equation (FPE) that is presented in terms of
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fractional derivatives. The solution of the FPE gives the time
evolution of the probability density function (pdf) of price
return [12–14].

In the field of statistical mechanics, the diffusion equation
(DE) is a fundamental equation of transport dynamics used to
describe a particle motion resulting from the interaction with
a thermal heat bath [15–17]. The DE defines the probability
of a particle to be at a certain position at a specific time,
and its pdf is given by the Gaussian distribution [18–20]. On
the other hand, for the generalization of anomalous transport,
a fractional diffusion equation (FDE) is used to describe a
continuous time random walk model [16,21]. This model
generalizes the Brownian diffusion motion based on two
parameters accounting for the jump length and the waiting
time between two successive jumps. A long-tailed waiting time
pdf—long rests—produces a “subdiffusion process” [16,17].
On the opposite case, the Lévy-stable distribution for the
jump length pdf—long jumps—produces a “superdiffusion
process” [16,22]. The anomalous diffusion under an exter-
nal velocity field or a microscopic advection is studied by
fractional diffusion-advection equations (FDAEs) [16,17,23].
Additionally, the fractional Fokker-Planck equation (FFPE) is
used to study the anomalous diffusion under the influence of an
external field: electrical bias field [16,17], periodic potentials
[24,25], or a harmonic potential [18,21,26]. The FFPE can be
derived either from the generalized FDE of continuous time
random walk models or from a Langevin equation with Levy-
stable noise or Gaussian noise and long rests [18,25,27,28].

The previous fractional kinetic equations (FDE, FDAE,
and FFPE) can be solved in terms of Lévy-stable distribution
function that has an analytical solution for only two cases—the
normal and Cauchy distributions [29]. In the remaining cases
there is not a closed-form expression. Typically the numer-
ical solution of the Lévy-stable distribution has numerical
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oscillations in the tail of the distribution. For some cases it
displays apparent discontinuity in logarithmic plots because
of negative values obtained from the numerical solution [30].
Consequently numerical solutions of the Lévy-stable distribu-
tion are not reliable as the probability density function must be
positive.

Analytical expressions in terms of power series have been
presented by different authors. Feller [31], Montroll and
Bendler [32], and Zolotarev [33] used power series to obtain
converging algorithms of the Lévy-stable distribution function
in two ranges, the first for α < 1 and the second for α > 1
for symmetric distributions. However, some of the proposed
series do not converge to the Lévy-stable function, and some
of them are only applicable for extreme values x → 0 or ∞.
Mantegna [34] presented a solution similar to that of Montroll
and Bendler [32] but the algorithm is only valid when x → ∞
and 0.75 < α � 1.95. Nolan [35] presented an algorithm for
asymmetric distributions of large events x → ∞ focusing only
on the tail behavior of the distribution. Thus, the Lévy-stable
distribution function does not have an explicit expression
[36,37] and no uniform solution of the Łévy-stable distribution
has been proposed [31,33,35].

Due to the absence of an explicit expression, numerical
solutions were developed to evaluate the Lévy-stable distribu-
tion function by using numerical recursive quadrature methods
[38–40]. Nolan [38,41] develops a numerical solution for the
estimation of Lévy-stable parameters through a maximum
likelihood method for each data set of x. However, Nolan’s
method converges only for α > 0.4 and the convergence to
the Lévy-stable distribution function seems to be not accurate
enough. Despite this fact, Nolan’s method constitutes an
important method that is still being used [39].

Apart from the numerical issues in the evaluation of the
Lévy-stable distribution, some authors have pointed out its
infinite variance as a drawback [42–44]. To avoid the infi-
nite variance of the Lévy-stable distribution function, several
truncations are proposed. The truncation was justified by the
observed change of slope of the tails on extensive datasets [45].
For example, when evaluating the returns per minute of S&P
500 index data over the ten-year period from 1985 to 1995 a
change of slope from α = 1.4 to 3 was found. The truncations
make the variance finite, consequently the distribution function
of the sum of independent random variables converges to the
normal distribution due to the central limit theorem for large
N . Nevertheless, a time series in some stock market indices can
exhibit infinite variance; one such case is the variance of price
fluctuations in Shanghai stock market index, which increases
when the time frame is enlarged [46,47], following a power
law with an exponent different from 0.5.

The aim of this paper is to formulate a uniform analytical
approximation for the Lévy-stable distribution function based
on a series expansion. To achieve this aim we propose several
regularizations of the inner and outer series expansions to
ensure convergence. This will be an important tool to get
the most accurate approximation reducing numerical errors
(oscillations) when the Lévy-stable function is evaluated.

This paper is divided in two parts. The first part introduces
the Lévy-stable distribution and the trans-stable function. They
are defined by Fourier transformations in Secs. III and IV,
respectively. The trans-stable function is shown to be identical

to the Lévy-stable distribution for α < 1 and it has the same
asymptotic behavior for α > 1 for large events. The second
part refers to Sec. V and it deals with the closed form—
analytical approximations—of the Lévy-stable distribution.
For this purpose, two types of approximations are developed.
The first approximation refers to the inner expansion that con-
verges asymptotically to the Lévy-stable distribution asx → 0.
The second approximation refers to the outer expansion that
converges asymptotically as x → ∞. For the outer expansion
two cases are presented; one is obtained from the Lévy-stable
function in Sec. V B and the second one is obtained from
the trans-stable function in Sec. V C. Finally, the uniform
solution in Sec. VI is proposed as a result of matching the
inner and the outer solution. The analytical equation of the
uniform solution proposed in this paper gives an approximated
solution of the Lévy-stable distribution function over the range
−∞ < x < ∞.

II. CENTRAL LIMIT THEOREM FOR LÉVY-STABLE
FLIGHTS

Section 35 of the book by Gnedenko and Kolmogorov
[48] shows that the normal distribution is an “attractor” of
distributions with finite variances. On the other hand, the
attractor of power-law distributions with infinite variances
corresponds to the more general “Lévy-stable law.” In other
words the Lévy-stable distribution is a specific function to
which other distributions converge.

The fundamental concept of attractors is formulated as
follows. If a normalized sum of a set of independent, identically
distributed random variables {X1,X2,X3....XN } satisfies

lim
N→∞

1

σN

(
N∑

i=1

Xi − μN

)
= X, (1)

then X belongs to the stable law. The coefficients μN and σN

represent the centering and normalizing values, respectively
[48].

The Gnedenko-Kolmogorov theorem is a generalization of
the classical central limit theorem which states that the normal-
ized sum of independent random variables with finite variance
in Eq. (1) converges to a variable that is normally distributed
[48,49]. This is the case of distributions with power-law
tails (α � 2) with finite variance. The normalized coefficient
is σN = √

N and the centering coefficient is μN = NE[X],
where N represents the length of the sum and E[X] refers to
expected value [50,51]. On the other hand, for independent
random variables which hold power-law distributions with
infinite variances1 0 < α < 2, Zolotarev [33] and Uchaikin
and Zolotarev [51] show that X in Eq. (1) follows a symmetric
Lévy-stable law if the normalization coefficient is σN = N1/α

and the centering coefficient is μN = 0 for α � 1 or μN =
NE[X] for α > 1.

Lévy-stable distributions belong to a wider class of in-
finitely divisible (ID) distributions. A random variable X is ID

1Infinite variance is observed for 0 < α < 2. This characteristic
occurs for 0 < α � 1, as a consequence of not having a well-defined
expected value E[X]. For 1 < α < 2, the integral in the variance
definition diverges [31,33,51].
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if it can be represented as the sum of a numberN of independent
and identically distributed random variables with a common
law (N ) [52], i.e.,

X =
N∑

i=1

Y
(N)
i ∀ N ∈ N. (2)

The pdf of X is f (x). If f (x) is Lévy stable, then f (x) is an ID
distribution function. The proof of this statement is obtained by
replacing Y

(N)
i = (Xi − μN )/σN in Eq. (2). Then, by applying

the limit N → ∞ Eq. (1) is obtained. An equivalent definition
of infinite divisibility can be given in terms of the characteristic
function. The characteristic function is defined as the Fourier
transform of the probability density function f (x):

ϕ(t) = E(eitx) =
∫ ∞

−∞
f (x)eitxdx. (3)

The characteristic function of the ID distribution can be
derived as follows. Consider X as a sum of two independent
random variables X = Y1 + Y2 with pdf’s f1(x) and f2(x),
respectively. For the convolution of the two probability distri-
butions [44], the pdf of X has the form

f (x) =
∫ ∞

−∞
f1(k)f2(x − k)dk. (4)

By substituting Eq. (4) into Eq. (3) and interchanging the order
of the integration the equation for the characteristic function
of X is obtained:

ϕX(t) = ϕY1 (t)ϕY2 (t). (5)

Assuming that Y1 and Y2 are identically distributed, the char-
acteristic function of f (x) can be defined as ϕX(t,2) = [ϕ(t)]2.
In general, for the sum of N independent and identically
distributed random variables in Eq. (2), the characteristic
function is given by

ϕX(t,N ) = [ϕN (t)]N. (6)

Consequently, Eqs. (2) and (6) are equivalent. Then, the
limit is applied in Eq. (6), ϕX(t) = limN→∞ ϕX(t,N ). As a
consequence, ϕX(t) is the characteristic function of the pdf of
the random variable X. This statement constitutes the Levy
continuity theorem that guarantees pointwise convergence
[52,53]. The Lévy-Khintchine formula or triple Lévy gives
the general equation for ID distributions [52]. This formula
determines the class of characteristic function where the pdf
is calculated from its Fourier transform [53–56]. The Lévy-
stable distribution constitutes a special case of the general
Lévy-Khintchine formula in the one-dimensional case that is
presented in the next section [53].

III. LÉVY-STABLE DISTRIBUTION FUNCTION

The Lévy-stable distribution is given by the Fourier trans-
form of Eq. (3):

f (x; α,β,σ,μ) = 1

2π

∫ ∞

−∞
ϕ(t ; α,β,σ,μ)eixt dt, (7)

where ϕ(t) is presented in Sec. 34 of the Gnedenko-
Kolmogorov book [48] as

ϕ(t ; α,β,σ,μ) = e{itμ−|σ t |α[1−iβsgn(t)�]}. (8)

The four parameters involved are the stability parameter α ∈
(02], the skewness parameter β ∈ [−1+1], the scale parameter
σ ∈ (0+∞), and the location parameter μ ∈ (−∞ + ∞). The
parameter α constitutes the characteristic exponent of the
asymptotic power law in the tails and it determines whether the
mean value and the variance exist. The Lévy-stable distribution
with 0 < α � 1 does not have a mean value and it has a
well-defined variance only for α = 2 [57].

The function sgn(t) represents the sign of t and the function
� is defined as

� =
{

tan
(

πα
2

)
α �= 1,

− 2
π

log |t | α = 1.
(9)

The Lévy-stable distribution is the family of all attractors of
normalized sums of independent and identically distributed
random variables. The most well-known Lévy-stable distribu-
tion functions are the Cauchy distribution with α = 1 and the
normal distribution function with α = 2. Both functions have
β = 0, which means they are symmetric distributions about
their mean [33].

In this paper we will focus on symmetric distributions. For
this case the Lévy-stable distribution can be normalized as
follows:

f (x; α,β = 0,σ,μ) = Re

{
S

(
x − μ

σ
,α

)}
, (10)

where the general distribution function is given by the follow-
ing equation:

S(x; α) = 1

π

∫ ∞

0
e−t

α

eixt dt . (11)

The real part of this function corresponds to the normalized
Lévy-stable distribution:

s(x; α) = Re[S(x; α)].

Consequently, by applying Euler’s formula we arrive at [58]

s(x; α) = 1

π

∫ ∞

0
e−t

α

cos(tx)dt. (12)

IV. TRANS-STABLE FUNCTION

Zolotarev used the term “trans-stable” to refer to a power
series expansion that converges to the Lévy-stable distribution
for 0 < α < 1 only [33]. In this paper, trans-stable is the
function that includes a solution that originates a Zolotarev
series when the series expansions are applied around x → ∞.
First we define the complex trans-stable function in the range
of 0 < α < 2. For α < 1, the Lévy-stable distribution and the
trans-stable function are identical. For α > 1, the trans-stable
function and the Lévy-stable distribution present the same
asymptotic behavior for x → ∞. Consequently, our trans-
stable function can be used to find a Lévy-stable distribution
function for α > 1 for large events.

First, the complex trans-stable function is defined as an
integral over the path C in the complex plane:

GC(x; α) = 1

π

∫
C

I (x,z; α)dz, (13)

where

I (x,z; α) = e−zα
eixz. (14)
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FIG. 1. Contour integration for Eq. (13).

The relation of this function to the Lévy-stable S(x; α) and
the trans-stable T (x; α) functions is obtained by choosing a
particular path C in the complex plane. Then, the Lévy-stable
distribution and trans-stable function are given by Eqs. (15)
and (16), respectively:

S(x; α) = G[0,∞)(x; α) = 1

π

∫ ∞

0
e−t

α

eixt dt, (15)

T (x; α) = G[0,i∞)(x; α) = 1

π

∫ i∞

0
e−tα eixt dt . (16)

First it will be shown that for 0 < α � 1 both Lévy-stable
S(x; α) and trans-stable T (x; α) functions are identical. For
1 < α < 2 it will be demonstrated that both functions exhibit
the same asymptotic behavior when x → ∞.

This demonstration is based on the evaluation of the com-
plex trans-stable integral Eq. (13) using polar representation
for α � 1 and rectangular representation for α > 1 on the
complex integrand. The demonstrations are presented in the
following subsections.

A. For 0 < α � 1

Here we will show that for 0 < α � 1 the Lévy-stable and
trans-stable functions are identical. This demonstration will be
done by considering the closed contour shown in Fig. 1. Since
the complex function in Eq. (14) is analytical over the complex
plane, the integral over the closed contour Eq. (13) is zero:∮

I (x,z; α)dz = 0. (17)

Let us take the contour in Fig. 1 that can be divided into
four straight paths so that

4∑
1

∫
Ci

I (x,z; α)dz = 0. (18)

Now, we will take the limit when τ → ∞ in Fig. 1. Using
Eqs. (15), (16), and (18) the following equation is obtained:

S(x; α) − T (x; α) = −limτ→∞
3∑

i=2

∫
Ci

I (x,z; α)dz. (19)
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FIG. 2. Comparison of numerical integration 0 < α < 1 between
the Fourier and Laplace transform of the Lévy-stable S(x; α) and
the trans-stable T (x; α) functions using recursive adaptive Simpson
quadrature method [60]. The absolute error tolerance of the method
is ξ = 3.5 × 10−8. The subfigures (a) and (b) are shown in semilog-
arithmic scale and subfigures (c) and (d) are shown in logarithmic
scale.

To evaluate the right hand side in Eq. (19) it is convenient to
use the polar representation of the complex number z = reiθ

and express Eq. (14) in polar coordinates:

I (x,z; α) = eg(x,r,θ ;α)+ih(x,r,θ ;α), (20)

g(x,r,θ ; α) = −rα cos(θα) − rx sin θ, (21)

h(x,r,θ ; α) = −rα sin(θα) + rx cos θ. (22)

We will adopt the nomenclature of signal theory, where the
polar notation separates the effects of instantaneous amplitude
|I | = eg and its instantaneous phase h of a complex function
[59]. Consequently, g(x,r,θ ; α) represents the attenuation
factor and h(x,r,θ ; α) represents the oscillation factor.

Now let us notice that limr→∞g(x,r,θ ; α) = −∞ for 0 <

α � 1 at any value of x. This statement is based on the fact
that cos(θα) � 0 in the first quadrant for α � 1. Consequently,
limr→∞I (x,z; α) = 0 so that the integral of the right side of
Eq. (19) vanishes at τ → ∞, therefore

S(x; α) = T (x; α) if 0 < α � 1. (23)

So, Eq. (23) will allow us to use the trans-stable function
T (x; α) instead of the Lévy-stable distribution function S(x; α)
for 0 < α � 1 in the numerical integration. This is with the
aim to remove numerical oscillation, specifically in the tails. It
is noticeable that the integration of the trans-stable function
T (x; α) in Eq. (16) is performed over the imaginary axis.
Applying the following change of variable t → −it (formally
done by defining u = −it so that du = −idt and later re-
placing the dummy variable u by t inside the integral), the
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TABLE I. Summary of Fourier and Laplace representations for
the Lévy-stable and the trans-stable functions.

Lévy-stable Trans-stable function
distribution S(x; α) T (x; α)

Fourier transform 1
π

∫ ∞
0 e−tα eixt dt 1

π

∫ i∞
0 e−tα eixt dt

Laplace transform 1
π

∫ −i∞
0 e−(it)α e−xt idt 1

π

∫ ∞
0 e−(it)α e−xt idt

trans-stable function is converted into a Laplace transforma-
tion. Consequently, the integration is performed over the real
axis. The Fourier and Laplace representations for T (x; α) are
shown in Eq. (24):

T (x; α) = 1

π

∫ i∞

0
e−tα eixt dt = 1

π

∫ ∞

0
e−(it)α e−xt idt.

(24)

Figure 2 compares the Fourier representation of the Lévy-
stable distribution function S(x; α) and the Laplace repre-
sentation of trans-stable function T (x; α). The integration is
performed using a recursive adaptive Simpson quadrature
method [60]. It is evident that the Laplace representation
removes the oscillations of the Fourier representation of the
Lévy-stable distribution for α < 1.

It is important to add that the Lévy-stable distribution
function and trans-stable function hold the same value for their
Fourier and Laplace transform representations. The difference
between each transform representation is the axis in which each
function is integrated. The expressions are shown in Table I.

B. For 1 < α < 2

Here we will show that for 1 < α < 2 the Lévy-stable and
trans-stable functions have the same asymptotic behavior on
large events if the integrals are appropriately truncated.

Let us recall Eq. (21) for the attenuation factor:

g(x,r,θ ; α) = −rα cos(θα) − rx sin θ.

In the previous section, it was shown that cos(θα) is always
positive in the first quadrant of the complex plane if 0 <

α � 1. Otherwise, if α > 1, then cos(θα) < 0 when θ = π/2.
Consequently, limr→∞I (x,r,θ ; α) = ∞ in this range, so that
the right hand side of Eq. (19) cannot be neglected. Therefore
S(x) �= T (x) if α > 1.

We can find an approximation between these two functions
if the τ value in the contour of Fig. 1 is kept large but finite
(τ < ∞). Thus, Eq. (18) becomes

S(x; α,τ ) − T (x; α,τ ) = −
3∑

i=2

∫
Si

I (x,z; α)dz, (25)

where S(x; α,τ ) and T (x; α,τ ) are the truncated integrals in
Eqs. (15) and (16), respectively:

S(x; α,τ ) = 1

π

∫ τ

0
e−t

α

eixt dt, (26)

T (x; α,τ ) = 1

π

∫ iτ

0
e−tα eixt dt . (27)

Now, the right hand of Eq. (25) can be evaluated in the limit
where x → ∞. First, notice that in the contour of integration
in Fig. 1 the magnitude of r is bounded by the condition 0 <

r <
√

2τ and sin(θ ) > 0 in the first quadrant, thus

limx→∞g(x,r,θ ; α) = −∞.

Consequently, limx→∞I (x,z; α) = 0 so that the integral on the
right of Eq. (25) vanishes at x → ∞. Therefore, the asymptotic
behavior is obtained for 1 < α < 2:

S(x; α,τ ) ∼ T (x; α,τ ) as x → ∞. (28)

This demonstrates that both functions are asymptotically
equivalent when the integrals are truncated.

The next step is to find the truncation value τ that leads to the
best approximation of these functions. The value of τ should
be chosen to minimize the truncation error and at the same
time to make the domain of integration as small as possible.
With this aim, the trans-stable function T (x; α,τ ) in Eq. (16)
is expressed in its Laplace representation by using the change
of variable t → −it . Thus,

T (x; α,τ ) = 1

π

∫ τ

0
Ī (x,t ; α)dt, (29)

where Ī corresponds to the Laplace transform integrand shown
in Eq. (24) and Table I:

Ī (x,t ; α) = e(−it)αe−xt i. (30)

Then, considering Euler’s representation for a complex expo-
nential function eiθ = cos(θ ) + isin(θ ), the following equa-
tions are obtained to express Eq. (30):

Ī (x,t ; α) = eḡ(x,t ;α)+ih̄(x,t ;α), (31)

ḡ(x,t ; α) = −tα cos

(
πα

2

)
− xt, (32)

h̄(x,t ; α) = −tα sin

(
πα

2

)
+ π

2
. (33)

The instantaneous amplitude |Ī | = eḡ will be determined by
the attenuation factor in Eq. (32). For that reason, an analysis of
ḡ(x,t ; α) was made in Fig. 3. The curve ḡ(x,t ; α) = 0 divides
two regions, one with exponential growth (ḡ > 0) and the other
with exponential decay (ḡ < 0).

In Fig. 3, two subregions can be recognized in ḡ < 0.
The first one is “zone A,” which contains negative ḡ values
with downward trend ∂g/∂t < 0 that is faster as x → ∞.
The second subregion is “zone B,” which contains smaller
negative ḡ values that follow an upward trend and ∂g/∂t > 0
displaying an increase behavior when x → 0. Considering
these subregions, the truncation τ in Eq. (29) will depend on
the x value as follows.

(1) For x → 0, the integration must avoid zone B. The
values of ḡ(x,t ; α) in this zone lead to an exponential growth
due to an upward trend ∂g/∂t > 0, consequently |Ī | � 0.

(2) For x → ∞, the integration should be restricted to
zone A. The downward trend ∂g/∂t < 0 leads us to obtain
ḡ(x,t ; α) → 0. Consequently, the convergence of |Ī | → 0
occurs faster as t → ∞.
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t
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FIG. 3. Curve ḡ = 0 separates two regions with ḡ > 0 and ḡ < 0.
In the latter region, two zones can be distinguished: zone A, which
contains negative values with downward trend ∂g/∂t < 0, and zone
B, which contains negative values with upward trend ∂g/∂t > 0. The
equation x = αt is an estimation of the boundary between zones A
and B.

For x → 0, the cutoff τ1 which avoids most of zone B
is defined by x = αt . This equation is an estimation of the
boundary between zones A and B for the full range of α values.

The cutoff τ1 obeys a linear equation and is obtained from
the following equations:

eḡ(x,τ1;α) = |Ī | = ε and x = ατ1, (34)

where the tolerance ε represents a negligible instantaneous
amplitude |Ī |.

For x → ∞, the cutoff τ1 will restrict the integration of Ī on
a closed interval [0,tc]. This occurs due to a faster downward
trend ∂g/∂t < 0. The tc value represents the point where
the instantaneous amplitude can be considered a negligible
quantity |Ī | = ε. Thus, the cutoff τ1 obeys an equation of a
vertical line τ1 = tc.

Notice that there are two different definitions for τ1. Each
one corresponds to a particular subregion A (x → ∞) or B
(x → 0). Consequently, the truncation τ1 for the trans-stable
function is defined by two equations which depend on the x

and ε values. These two equations have their intersection point
at (tc,xc):

τ1(ε,x) =
{
tc(ε) if x > xc

x/α if x < xc
for α > 1, (35)

where tc(ε) and xc are given by the implicit form of the
following equations:

αtc
2 + tc

α cos(πα/2) + ln(ε) = 0,

xc = αtc. (36)

Figure 4 illustrates the contour plot of the instantaneous
amplitude |Ī | for α = 1.4. The truncation τ1 is presented
as a cutoff made when a negligible value of instantaneous
amplitude is achieved |Ī | = ε = 10−3. The point (xc,tc) is
located at the intersection between the contour line of the
given tolerance ε and the equation τ1 = x/α. The truncation
τ1 avoids zone B, which contains negative values for ḡ with
∂g/∂t > 0. One can observe that there is an abrupt upward
trend in |Ī | for x → 0. So, the truncation τ1 allows us to make
a perfect cutoff before this upward trend starts. It is noticeable
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FIG. 4. Contour plot of eḡ that represents the instantaneous amplitude |Ī | for α = 1.4 and tolerance ε = 10−3 in Eqs. (31) and (32). The
subfigure (a) shows the red line x which was drawn by considering ḡ = 0 representing the limit between the positive and negative values of the
attenuation factor ḡ. The truncation τ1 is applied following Eq. (35). Downward trend before τ1 and upward trend after τ1 of |Ī | can be observed
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FIG. 5. Comparison of numerical integration 1 < α < 2 between
the Fourier and Laplace transform of Lévy-stable S(x; α) and trans-
stable T (x; α) functions using recursive adaptive Simpson quadrature
method [60]. The absolute error tolerance of the method is ξ = 3.5 ×
10−8. The subfigures (a) and (b) are shown in semilogarithmic scale
and subfigures (c) and (d) are shown in logarithmic scale.

that with a small tolerance ε the intersection will occur in the
rightmost part of the contour plot, consequently the interval
of integration will be wider and a more accurate result can be
obtained.

Figure 5 shows how the solutions of trans-stable and Lévy-
stable distribution functions are quite similar after the xc value,
which depends on the tolerance ε. For a smaller ε the similarity
of both asymptotic series is expected to improve due to a wider
interval of integration. However, the value xc will be higher and
the similarity will start at the rightmost part of the axis.

V. ASYMPTOTIC EXPANSIONS

Asymptotic expansions are developed to obtain closed-
form representations for the Lévy-stable distribution function
S(x,α). These expansions are based on the Taylor series of the
complex exponential function:

ez ∼
n∑

k=0

zk

k!
as n → ∞. (37)

Two different asymptotic expansions will be performed. The
first one corresponds to the “inner expansion.” To get this
solution the Lévy-stable distribution function is evaluated by
expanding eixt of Eqs. (15) and (26) around x = 0. The second
one refers to the “outer expansion,” which is the asymptotic
series expansion for x → ∞. When x >> 1, the oscillations
of the integrands in Eqs. (15) and (26) are large. Consequently,
there are important cancellations due to factor eixt in the
integral. Thus, we focus our integration in the region with
the major contribution in the integral, that is, around t = 0. In

consequence, the amplitude of the integral et α is replaced by its
Taylor expansion around t = 0. To guarantee the convergence
of the series expansion, the improper integrals are truncated.
The truncation occurs because of the sufficient conditions
for Riemann integral existence. These conditions are that the
integrand must be bounded and the domain of integration is a
closed interval [61,62].

A. Inner expansion

The inner expansion is obtained making a substitution of eixt

by its Taylor series expansion given by Eq. (37) in the integrand
of the Lévy-stable distribution I . After this substitution, the
integrals in Eqs. (15) and (26) can be analytically solved. The
difference between these two equations is the truncation on the
interval of integration.

For α � 1 the convergence of the series is slow, demanding
a large value of order n in Eq. (37) to reach an acceptable
similarity with the original integrand I . For this reason, the
improper integral is truncated after a small enough amplitude
of I is obtained. For α > 1 the convergence occurs faster and
truncation is not needed.

1. For 0 < α � 1

The inner expansion is obtained by substituting eixt in
Eq. (26) by its Taylor expansion using Eq. (37). Then

Si(x; α,ε) = 1

π

∫ τ2(x,ε)

0
e−tα eixt dt

∼ 1

π

∫ τ2(x,ε)

0
Indt as n → ∞, (38)

where In is given by

In(x; t,α) =
n∑

k=0

e−tα (ixt)k

k!
. (39)

The upper limit τ2 is given by the following equation:

τ2(x,ε) = − ln(ε)

x
. (40)

This truncation results from the equation eixτ2 = ε, where ε

represents the tolerance that needs to be small to ensure a cutoff
when negligible quantities of |I | and |In| are obtained. Conse-
quently, the areas under the curve of both functions are similar.

The convergence of In to I demands a large value of order n

in Eq. (37), as it can be observed in Fig. 6. This occurs because
of slow decay of the e−tα value for α < 1. This is the reason
to evaluate the integral in the closed interval [0,τ2], where the
original integrand I and its Taylor series approximation In are
similar.

The integrals in Eq. (38) can be solved without difficulty.
Then, the inner expansion si is given by the real part of this
solution:

si(x; α,ε) = Re[Si(x; α,ε)].

Consequently,

si(x; α,ε) = 1

πα

∞∑
k=0

xk

k!
γ

(
k + 1

α
,τ2(x; ε)α

)
cos

(
πk

2

)
,

(41)
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FIG. 6. Comparison of I = etα eixt and In = etα
∑n

k=0
(ixt)k

k! of Eqs. (38) and (43), where In is obtained by replacing eixt in I by its Taylor
expansion. The plots are for α = 0.75 in the subfigures (a)–(f) and α = 1.8 in the subfigures (g)–(l). For α � 1, the truncation is required to
ensure a cutoff when negligible quantities of |I | and |In| are obtained. The truncated error of the Taylor expansion is measured by using the
absolute value of the difference |I − In|. For α > 1, since the convergence is fast the truncation is unnecessary. For these particular examples,
the integrand I is evaluated at x = 4.5 for three cases of n = 20,30, and 50 with ε = 10−9.

where γ represents the incomplete gamma function [63]:

γ (z,b) =
∫ b

0
xz−1e−xdx. (42)

Due to a computation of the incomplete gamma function γ ,
Eq. (41) was modified for numerical analysis in MATLAB2

2. For 1 < α < 2

Here we derive the inner expansion si for α > 1 from the
nontruncated form of the Lévy-stable distribution function.
This derivation is made by substituting eixt in Eq. (15) by its
Taylor expansion in Eq. (37), then

Si(x; α) = 1

π

∫ ∞

0
e−tα eixt dt ∼ 1

π

∫ ∞

0
Indt as n → ∞.

(43)

For α > 1, the convergence of integrand I and the integrand
after the substitution In occurs faster than for α < 1. This
feature is observed in Fig. 6, where an acceptable convergence

2MATLAB defines the incomplete gamma function as γ ∗:

γ ∗(b,z) = 1

�(z)

∫ b

0
xz−1e−xdx,

where �(z) is the gamma function. [64].

between I and In is obtained with a small n value. Conse-
quently, the integral is evaluated without truncation or taking
the limit ε → 0 in Eq. (38).

Then, we only consider the real part of the solution of
Eq. (43):

si(x; α) = Re[Si(x; α)].

Consequently,

si(x; α) = 1

πα

∞∑
k=0

xk

k!
�

(
k + 1

α

)
cos

(
πk

2

)
, (44)

where � represents the gamma function [63]:

�(b) =
∫ ∞

0
xb−1e−xdx.

Examples for α = 0.75 and 1.80 are shown in Figs. 7 and
8, respectively. In Fig. 7, for α � 1 the truncation τ2 is needed,
otherwise the convergence to the Lévy-stable distribution
function will be ultraslow as n → ∞. This is evident when
a comparison is made between Figs. 7(a) and 7(b). They
represent a nontruncated and truncated Lévy-stable solution,
respectively. Figure 7(b) displays an acceptable convergence
with a smaller order n. In Fig. 8, for α > 1 the convergence
to the Lévy-stable distribution function occurs faster and no
truncation is needed. For both cases the inner expansion si

behaves well because it converges to s(x; α).
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FIG. 7. Inner expansion of the Lévy-stable distribution function
for α = 0.75. This is obtained by applying Taylor expansion around
t = 0. The subfigure (a) is a nontruncated integral. The subfigure (b)
is the truncated integral with tolerance ε = 10−9 in Eq. (41), which
displays a fast convergence due to the integral’s truncation.

B. Outer expansion

The outer expansion is obtained making a substitution of the
amplitude e−t α in the integrand of the truncated Lévy-stable
distribution function I in Eq. (26) by its Taylor series expansion
around t = 0. Then, the following relation is obtained:

So(x; α,ε) = 1

π

∫ τ3(ε)

0
e−tα eixt dt

∼ 1

π

∫ τ3(ε)

0
Gndt as n → ∞, (45)
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FIG. 8. Inner expansion of the Lévy-stable distribution for α =
1.80 as a result of applying a Taylor expansion in the “exponential
of the phase” of the integrand. The figure illustrates the nontruncated
Lévy-stable solution in Eq. (44). This figure displays a fast conver-
gence so that no truncation is needed.

where Gn is given by

Gn(x; α) =
n∑

k=0

(−tα)k

k!
eixt . (46)

The upper limit τ3 is given by the following equation:

τ3(ε) = [− ln(ε)]1/α. (47)

This truncation is calculated from e−τ3
α = ε, where ε is

defined as tolerance and represents a negligible instantaneous
amplitude when ε is small. The truncation allows a faster
convergence of Gn to I and reduces the error of integration
due to an accurate approximation on the interval [0,τ3].

The original integrand I and the new integrand after
applying Taylor series Gn in Eq. (45) were evaluated in Fig. 9.
Since the convergence of Gn to I is slow, the truncation τ3 is
considered to define the new interval of integration [0,τ3].

To obtain the outer solution so a change of variable after the
series expansion is applied in Eq. (45). The change of variable
is −u = ixt , so −du = ixdt . This gives us an approximation
of the form

So(x; α,ε) ∼ 1

π

n∑
k=0

(−1)k

k!

(−1

ix

)kα+1 ∫ −ixτ3(ε)

0
ukαe−udu.

(48)

To solve the integral, the incomplete gamma function of
imaginary argument γ (v,iz) is used [63,65]. The following
solution is presented by Barakat as a special case of the
confluent hypergeometric function [65]:

γ (v,iz) =
∫ iz

0
tv−1e−t dt

= (iz)vv−1
1F1(v,1 + v,−iz), (49)

where 1F1(v,1 + v,−iz) represents the confluent hypergeo-
metric function. Then, comparing Eqs. (48) and (49), we obtain
the following relation between the variables, v = kα + 1, z =
−xτ3, and t = u.

Finally, the real part of the solution is

so(x; α,ε) = Re[So(x; α,ε)].

Consequently,

so(x; α,ε) = − 1

π

∞∑
k=1

(−1)k

k!

(
cos(παk)

kα + 1

)
· · ·

× [−τ3(ε)]kα+1
1F1(kα + 1,kα + 2,ixτ3(ε)).

(50)

Figure 10 shows the calculation of Eq. (50) for α = 1.8. In this
figure is evident that the outer expansion so converges slowly.
This occurs due to computation of the confluent hypergeomet-
ric function 1F1 which demands considerable computational
time. The series that defines the function 1F1 does not have a
trivial structure, which creates numerical issues which makes
the calculation computationally inefficient [66]. The approxi-
mation in Fig. 10 shows how the convergence demands a large
value of order n to obtain an accurate approximation at the tail.
The convergence resembles waves that slowly start to decrease
from the tails to the peak of the Lévy-stable distribution. The
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FIG. 9. Comparison of I = etα eixt and Gn = (−tα )k

k! eixt dt of Eq. (45), where Gn is the Taylor expansion of I around t = 0. The plots are
for α = 0.75 in the subfigures (a)–(f) and α = 1.8 in the subfigures (g)–(l). Truncation of the integral is required for both cases. The reason of
that is to reach an accurate approximation between the original integrand I and the one after the series expansion Gn. The error is measured
by the absolute value of the difference |I − Gn|. For these particular examples, the integrand I is evaluated at x = 4.5 for three cases of
n = 20,30, and 50 with ε = 10−9.

series untiln = 30 does not show an acceptable approximation.
Only an approximation on tails is obtained after n = 40. For
x → 0, the series of so converges to a specific value different
from the Lévy-stable distribution function. The convergence
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FIG. 10. Outer expansion so for α = 1.80 with tolerance ε =
10−6 in Eq. (50). The subfigures (a) and (b) correspond to n =
10,30,40, and 100, respectively.

to the Lévy-stable distribution function is observed only for
x → ∞.

C. Outer expansion by trans-stable distribution

Because of the slow convergence of the outer expansion
so and its wavelike behavior, an alternative approximation is
obtained using the trans-stable function T (x; α). As it was
previously explained in Sec. IV, the solutions of trans-stable
T (x; α) and Lévy-stable S(x; α) functions are identical for
0 < α � 1 and similar for 1 < α < 2 after the xc value.
Consequently, the improper integral in Eq. (24) is used to
calculate the series expansions for 0 < α � 1 and the truncated
trans-stable integral in its Laplace representation in Eq. (29)
for 1 < α < 2.

This outer expansion to is given by the analytical solution
of the trans-stable function after applying the Taylor series
of e−(it)α around t = 0 in the trans-stable integrand Ī using
Eqs. (37) and (24). Then, the following equation is shown:

To(x; α,ε) = 1

π

∫ τ1(x,ε)

0
e−(it)α e−xt idt ∼ 1

π

∫ τ1(x,ε)

0
Kndt,

(51)

where Kn is given by

Kn(x) =
n∑

k=0

(−(it)α)k

k!
e−xt i. (52)

Due to a slow convergence of Kn to Ī the cutoff τ1 is applied.
The truncation τ1 has two different expressions. For α � 1,
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the truncation τ1 depends on the tolerance ε and for α > 1 it
depends on the tolerance ε and x values. These expressions
will be explained in the following subsections.

To solve the integral in Eq. (51), the following change of
variable is applied: xt = u and xdt = du. This leads to the
following series expansion:

To(x; α,ε) ∼ 1

π

∞∑
k=0

(−1)k

k!

(−1

ix

)kα+1

×
∫ xτ1(x,ε)

0
u(kα+1)−1e−udu. (53)

The upper limit of the integral changes from τ1 to xτ1, but still
remains on the real axis. The integral above can be solved using
the incomplete gamma function defined in Eq. (42). Then, the
real part of the result is obtained:

to(x; α,ε) = Re[To(x; α,ε)].

Consequently,

to(x; α,ε) = − 1

π

∞∑
k=1

(−1)k

k!

(
1

x

)kα+1

× sin

(
παk

2

)
γ (kα + 1,xτ1(x,ε)). (54)

The determination of τ1 for α � 1 and α > 1 is presented in
the following subsections.
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FIG. 11. Outer expansion of the trans-stable function for α =
0.75. This result is obtained from the Taylor expansion of the
integrand around t = 0 in Eqs. (54) and (55). The subfigure (a) is
the nontruncated integral that shows slow convergence. The subfigure
(b) corresponds to the truncated integral with tolerance ε = 10−6. The
subfigure (b) displays a faster convergence to the trans-stable function
as a result of the truncation of the integral.

1. For 0 < α � 1

For α � 1, the cutoff τ1 in Eq. (54) is given by the following
equation:

τ1(ε) = [− ln(ε)]1/α for α � 1. (55)

This truncation is obtained from e−τ1
α = ε, where the tolerance

ε represents a negligible instantaneous amplitude for the
integrands in Eq. (51).

2. For 1 < α < 2

The truncation τ1 in Eq. (54) for 1 < α < 2 was already
obtained in Sec. IV B and defined by Eq. (35) as

τ1(x,ε) =
{
tc(ε) if x > xc,

x/α if x < xc,
for α > 1,

where tc and xc were defined by Eq. (36). As indicated in
Sec. IV B, the value of τ1 is used to minimize the truncation
error and at the same time to make the domain of integration
as small as possible.

The outer expansion by the trans-stable function converges
to the original trans-stable function. Examples are shown in
Fig. 11 for α � 1 and Fig. 12 for α > 1. Note that in both
cases the truncation τ1 allows a faster and more accurate
convergence to the real part of the trans-stable distribution
t(x; α). Consequently the outer solution to shows an identical
solution as s(x; α) for α � 1 and the same asymptotic behavior
for α > 1. For a smaller ε the convergence of these outer
expansions to the trans-stable function will occur faster. Also
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FIG. 12. Outer expansion of the trans-stable function for α =
1.80 as a result of applying Taylor expansion of the integrand
around t = 0 in Eqs. (35) and (54). The subfigure (a) shows that the
nontruncated integral does not converge to the trans-stable function.
The subfigure (b) corresponds to the truncated integral with tolerance
ε = 10−6. The subfigure (b) displays a fast convergence as a result of
the truncation of the integral.
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TABLE II. Summary of inner and outer expansions.

Range of α 0 < α � 1 1 < α < 2

Normalized Lévy-stable s(x; α) = 1
π

∫ ∞
0 e−t

α

cos(tx)dt

distribution (s)

Normalized trans-stable t(x; α) = 1
π

∫ ∞
0 e−tα cos ( πα

2 )−xtsin[tα sin( πα

2 )]dt

distribution (t)

Inner expansion (sn
i ) sn

i (x; α,ε) = 1
πα

∑n

k=0
xk

k! γ ( k+1
α

,τ2
α) cos ( πk

2 ) sn
i (x; α) = 1

πα

∑n

k=0
xk

k! �( k+1
α

) cos ( πk

2 )

τ2 = − ln(ε)
x

Outer expansion (sn
o ) sn

o (x; α,ε) = − 1
π

∑n

k=1
(−1)k

k! ( cos (παk)
kα+1 )(−τ3)kα+1

1F1(kα + 1,kα + 2,ixτ3)

τ3 = [− ln(ε)]1/α

Outer expansiona (tn
o ) tn

o (x; α,ε) = − 1
π

∑n

k=1
(−1)k

k! ( 1
x

)
kα+1

γ (kα + 1,xτ1) sin ( παk

2 )

τ1 = [− ln(ε)]1/α τ1 =
{

tc if x > xc

x/α if x < xc

Complete and incomplete �(z) = ∫ ∞
0 xz−1e−xdx γ (z,b) = ∫ b

0 xz−1e−xdx

gamma functions (� and γ )

aRefer to Eq. (35) to obtain the tc and xc value for 1 < α < 2.

in Fig. 11 the nontruncated trans-stable expansion is shown
as an expansion that converges extremely slowly requiring
a higher order n than truncated trans-stable expansion to
obtain an acceptable convergence. In Fig. 12 the nontruncated
trans-stable expansion does not converge to the trans-stable
function at all.

VI. UNIFORM SOLUTION

The uniform solution is presented as the combination of
the inner solution and the outer solution to construct an
approximation valid for all x ∈ [−∞,∞]. To construct the
uniform solution an asymptotic matching method based on
boundary-layer theory is applied [67,68]. This method is based
on superposing the inner and outer solution and subtracting the
overlap between them:

su(x) = yout(x) + yin(x) − yoverlap(x). (56)

The overlap is defined as the limit of the rightmost edge of yin

and the leftmost edge of yout:

yoverlap = lim
x→0

yout = lim
x→∞ yin. (57)

For this case, our proposed uniform solution su is constructed
based on our inner expansion si and our outer expansion to.
These previous solutions were already defined in Sec. V.

For a better understanding of our uniform solution su, two
subsections are presented. Section VI A contains a summary of
inner and outer expansions previously obtained. In Sec. VI B
the steps taken to obtain su are explained.

A. Summary of inner and outer expansions

Table II contains the normalized Lévy-stable and trans-
stable distribution and the summary of previous results ob-
tained from Lévy-stable and trans-stable functions by applying
Taylor expansions. The series refers to one inner expansion si

and two outer expansions so and to.

For the inner expansion si , the solution for α � 1 cor-
responds to a truncated Lévy-stable solution which allows
a faster convergence. For α > 1 the series is obtained from
the nontruncated Lévy-stable solution. The only difference
between them is the use of the incomplete gamma function
γ in the solution for α � 1, where �(z) = limb→∞ γ (z,b).
Consequently, for both cases the truncated series can provide
a good approximation. However, in the case of α � 1 we must
take the limit as

s(x; α) = lim
ε→0

[
lim

n→∞ sn
i (x; α,ε)

]
for x < ∞.

In general the order in which we apply the limits cannot be
exchanged. However, in the case of α > 1 the order of the
limits does not affect the convergence. Taking a small value of
ε ensures a faster convergence.

For the outer expansion two expressions were derived. The
first outer expansion so is obtained by performing the Taylor ex-
pansion around t = 0 on the truncated Lévy-stable distribution.
This solution displays a slow convergence for n → ∞. The
second outer expansion to is obtained by applying the Taylor
expansion on the truncated trans-stable function for x → ∞.
The truncation of to depends on α and there are two different
cases. For α � 1 it converges to the exact solution of s(x; α)
and for α > 1 it converges to the same solution at the tails of
s(x; α). To guarantee convergence, we need to take the limit as

t(x; α) = lim
ε→0

[
lim

n→∞ tno (x; α,ε)
]

for x > 0.

Exchanging the order of the limits will affect the conver-
gence. The outer expansion that will be used is to, because it
displays a faster convergence and it does not exhibit wavelike
behavior.

B. Steps to obtain the uniform solution

To obtain the uniform solution su the condition in Eq. (57)
needs to be satisfied. The inner expansion si and the outer

012103-12



CLOSED-FORM SOLUTIONS FOR THE LÉVY-STABLE … PHYSICAL REVIEW E 98, 012103 (2018)

expansion to have to be multiplied with an appropriate coeffi-
cient A(x) to obtain the asymptotic solutions with a common
matching value ym. These operations will allow us to obtain
yout and yin. Consequently, Eq. (56) will be applied to obtain the
closed-form solution of the Lévy-stable distribution function.

Below, the steps are explained to obtain the location of the
matching between the inner and the outer solutions (xm,ym),
the coefficient A(x), and the uniform solution su.

1. Finding the inner and outer limit (xm, ym)

Considering si and to as good approximations to the Lévy-
stable distribution function, we must require that the inner and
the outer expansions will be close enough before matching
them [69]. Consequently, the point where the matching be-
tween si and to takes place is (xm,ym) and it represents the
location where the minimal vertical distance between the inner
si and the outer solution to occurs.

The distance function between si and s is defined as δi and
the distance function between to and s is δo. Consequently,
(xm,ym) is the point where the Pythagorean addition of these
distances is minimal:

δi
2(x; α,ε) = [s(x; α) − si(x; α,ε)]2,

δo
2(x; α,ε) = [s(x; α) − to(x; α,ε)]2,

δ2(x; α,ε) = δo
2(x; α,ε) + δi

2(x; α,ε),

d[δ2(x; α,ε)]

dx

∣∣∣∣
xm

= 0. (58)

The xm value is obtained from the previous equation. Then, ym

is defined by the equidistant point between both functions:

ym = si(xm) + to(xm)

2
. (59)

2. Defining the inner and outer solutions yin and yout

To obtain the uniform solution su, the asymptotic matching
method based on the boundary-layer theorem [67] is applied.
Consequently, the inner solution yin and the outer solution yout

must have a matching asymptotic behavior. More precisely, the
limit of the outer solution yout when x → 0 should correspond
to the limit of the inner solution yin when x → ∞. To obtain
yin and yout solutions, the series expansions si and to are
multiplied by appropriate coefficients to meet the requirements
of matching asymptotic expansions, so the yin and yout are
defined as follows:

yin(x; α,ε,μ) = [si(x) − ym][1 − A(x; μ)] + ym, (60)

yout(x; α,ε,μ) = [to(x) − ym]A(x; μ) + ym, (61)

where the overlapping factor A(x) is defined as

A(x; μ) = 1

2

[
1 + tanh

(
x − xm

μ

)]
. (62)

The A(x; μ) is used to smooth si and to and provides them with
a symmetric overlap section around xm and gives yin and yout

an asymptotic behavior. The variable μ determines the width
of the overlap between yin and yout.
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FIG. 13. Uniform solution su for α = 0.75 as a result of joining
the inner solution yin with the outer solution yout. The tolerance ε =
10−6, μ = 0.052, and ni = 6 and no = 17.

It is easy to see that Eqs. (60) and (61) satisfy Eq. (57),
where the limits of yout and yin converge to a constant value
ym.

3. Defining the uniform solution su

The inner solution yin Eq. (60) and the outer solution yout in
Eq. (61) were defined to fulfill the requirements for matching
asymptotic expansions. Then, Eq. (56) is applied to obtain the
uniform solution su:

sni ,no

u (x; α,ε,μ) = tno
o (x; α,ε)

2
+ s

ni

i (x; α,ε)

2
+ tanh

(
x−xm

μ

)

×
(

tno
o (x; α,ε)

2
− s

ni

i (x; α,ε)

2

)
. (63)

4. Find the best su by choosing the most appropriate μ

The width of the overlap between yin and yout can be
optimized to obtain the closest solution su of the Lévy-stable
distribution function. The most appropriate value of μ needs
to be obtained for each particular value of α. For that, the least
square method will be applied between the original s(x; α) and
the new closest solution su(x; α,ε,μ). Applying Eqs. (12) and
(63) the following equation is obtained:

L(μ) =
N∑

i=1

[su(xi ; α,ε,μ) − s(xi ; α)]2, (64)

where the N value represents the length of the sample used to
minimize L.

The similarity between the exact solution of s(x; α) and
the uniform solution su(x; α,ε,μ) is observed in Figs. 13 and
14 for α = 0.75 and 1.80, respectively. For α < 1, a good
approximation between s(x; α) and su(x; α,ε,μ) is obtained
in the tails after mixing two different orders. The order for
the inner solution is ni = 6, which makes the solution concave
upward. The order for the outer solution is no = 17, which
makes the solution concave downward. This combination of
orders will ensure a good matching asymptotic behavior. For
α > 1, the uniform solution works well, and a good uniform
solution is obtained quickly with a lower order n = 6.

Lower orders can be used for both cases, where the most im-
portant aspect to consider is the different concavity between yin

012103-13



ARIAS-CALLUARI, ALONSO-MARROQUIN, AND HARRÉ PHYSICAL REVIEW E 98, 012103 (2018)

0 1 2 3 4 5 6 7
x

10-3

10-2

10-1

100

s(
x;

)

Stable Function s
Inner Solution yin
Outer Solution yout
Uniform Solution su

(x
m

,y
m

)

FIG. 14. Uniform solution su for α = 1.80 as a result of joining
the inner solution yin with the outer solution yout. The tolerance ε =
10−6, μ = 0.4, and n = 8.

and yout for the matching asymptotic behavior. The concavity
of the inner and outer solution is defined by the trigonometric
element in each solution.

VII. CONCLUSIONS

In this paper we presented a uniform solution of the Lévy-
stable distribution. This solution converges to the Lévy-stable
distribution function in the full range of x values −∞ < x <

∞. This condition makes our uniform solution more robust
than previous analytical expressions that were only applicable
for extreme values x → 0 or ∞. Also, our uniform solution
removes the negative values obtained in previous numerical
solutions of the Lévy-stable distribution function for all α

values, which makes this solution more reliable because a
probability density function must be always positive.

The uniform solution is the result of an asymptotic matching
between the inner and outer expansions. The inner expansion
results from the Taylor series expansion of the characteristic
function of the Lévy-stable distribution around x = 0. The
outer expansion is obtained from the Taylor expansion of
the integrand of the trans-stable function around t = 0. The
convergence of these expansions is guaranteed if the integrands
are truncated, and the speed of convergence depends on how
the truncation is implemented.

For α � 1, the uniform solution provides a good approx-
imation for the full range of x values. Also, the numerical
integration of the trans-stable function constitutes a second
option which allows us to obtain a robust numerical solution
of the Lévy-stable distribution function and removes the oscil-
lations. For α > 1, the uniform solution provides an analytical
solution of the Lévy-stable distribution function based on
fast converging series. Consequently, the closed-form solution
presented in this paper will provide an analytical solution of
the fractional kinetic equations (FDE, FDAE, and FFPE).

Additionally, having an analytical solution for the Lévy-
stable distribution will contribute to modeling stock markets.
To achieve this, Lévy-stable noise will be generated numeri-
cally. The following procedure is described to generate Lévy-
stable noise. First random points between zero and one are gen-
erated. Then, the inverse of the cumulative distribution function
of the Lévy-stable distribution is applied to these points.
Consequently, the corresponding image of the uniformly
generated points will be Lévy-stable distributed. Different
compromises between accuracy and efficiency in the random
number generation can be attained by changing the order n in
Eq. (63). Hence, a computational efficiency and high precision
are achieved during the generation of large sets of points.

For modeling stock markets, Lévy-stable noise represents
the net trading volume—the difference between buy and sell
stocks’ volume—and will feed macroscopic models of the
stock markets. On the other hand, to develop a microscopic
model of stock markets, the Lévy-stable noise can be used
to represent the order book (OB)—the list of request for buy
and sell orders with prices and volumes. The use of Levy-stable
noise is justified by the fact that volumes, lifetime of orders, and
the placement of limit orders in a OB present power-law decays
with a characteristic exponent—stability parameter α—which
belongs to Lévy-stable distribution function.
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