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Damage separation model: A replaceable particle method based on strain energy field
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We present a realistic model for simulating particle fragmentation in granular assemblies, the damage
separation model (DSM), that addresses the limitations of previous methods by replacing the particle with
smaller ones after fragmentation. The method is based on the calculation of the strain energy field inside the
particle, and it solves the two major issues of the existing replaceable particle methods: the oversimplification
of particle stress, and the unrealistic geometrical constraints needed in postbreakage replacements. Our model
is formulated with three modules: (i) a boundary element calculation of stress and strain fields inside the
spheropolygons that represent individual particles; (ii) a strain-energy-based theoretical framework to determine
the onset of fragmentation; and (iii) an advanced geometrical algorithm, the subset separation method (SSM),
to handle the postbreakage replacements in the discrete element simulations. Especially, the SSM effectively
calculates the fragments required by the replacement with no geometrical limitation on the number, location, and
orientation of the fracture planes. A uniaxial compression test based on laboratory setups is used to validate the
method. A comparison is further conducted to study the performance of four different replaceable irregular parti-
cle methods. Results indicate that our method overcomes most of the existing issues, including stability, accuracy,
and artificial constraints on the number and shape of fragments. The DSM has great potential for capturing the
morphological changes of particle breakage and comminution with an unprecedented numerical resolution.
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I. INTRODUCTION

Particle breakdown occurs in granular media when there
is sufficient external loading. For example, in fault zones
there is a continual breakdown of the fractured zone or fault
gouge layer, leading to a power-law distribution of particle
sizes. At the microscale, the shape [1,2] and the size of each
broken particle [3–5] change as particles break down. At the
mesoscale, the contact force chains are disturbed and quickly
rearranged after the breakage events, which changes the dis-
tribution of the local mechanical energy. At the macroscale,
the particle breakage causes a variation in density [6], com-
pressibility [7], and elastic modulus. The effects of particle
breakage have been comprehensively studied through many
experiments [1–3,7], which have built a solid foundation for
understanding particle breakage. These studies focused on the
changes of the state variables at the macroscale, such as the
particle size distribution (PSD) and normal compression line
(NCL) [6], under different loading conditions.

The study of particle breakage at the grain scale is often nu-
merically simulated with the discrete element method (DEM)
[8–11]. This method provides comprehensive information
about the evolution of the force chains and the locations of
strongly loaded particles, which are difficult to observe in
laboratory experiments. The DEM-based breakage methods
have been systematically developed due to these advantages.
Based on the features of their algorithms, existing methods
can be summarized into two paradigms: agglomerates and
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replaceable particles [10]. The replaceable particle method
considers each grain as a single entity [12–16]. The breakage
of the original particle is achieved by replacing the original
particle with new fragments if a specified breakage criterion
is fulfilled. For the agglomerates method [9,17–22], each par-
ticle consists of many small particles that are bonded together
through predefined forces, thereby giving an approximation to
the continuum stress state of the agglomerate particle. Under
external loading, a bond within the agglomerate may break
once certain thresholds are reached. This strategy eventually
causes the total breakdown of the agglomerates into its con-
stituents, at which time no further breakage is allowed.

The agglomerates method is regarded as a less favorable
method since it is computationally much less efficient than
the replaceable particle method while not clearly showing
better accuracy [10]. The replacement particle method has
the highest efficiency, and results of PSD and NCL are also
in good agreement with experimental findings [10]. How-
ever, the breakage criteria are based on the calculation of
the averaged stress tensor on each particle. This approach
does not correctly model the breakage of an arbitrarily shaped
grain [23]. Specifically, it is commonly used to break down
a circular particle (in two dimensions) into other circular
particles. This leads to two major problems after the replace-
ment because the particles are limited to a circular shape:
The conservation of mass cannot be guaranteed, and local
contact forces experience a discontinuous change that causes
computational instability and an energy jump in the granular
material. These problems can be solved by using irregular
particles, such as polygons, but this leads to a tradeoff be-
tween computational efficiency and accuracy of the PSD. The
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disadvantages of using replaceable particles arise from the
dependency on the oversimplification of the particle stress
state. The averaged stress tensor cannot accurately capture
the inner particle stress state before the breakage, and hence
it cannot accurately predict the breakage of the particle. As
such, it is difficult to properly determine the shape of the new
fragments from the averaged stress tensor. Hence, artificial
constraints on the number and the orientation of the fracture
planes are required by the replacement particle strategies.

In this work, we develop a replaceable particle method,
namely the damage separation method (DSM), that could
largely solve the aforementioned problems. The method is
based on our previous boundary spheropolygon element
method (BSEM) formulation [23,24]. This is a combina-
tion of the spheropolygon discrete element method (SDEM)
[25,26]—a discrete element method that handles the dynam-
ics of spheropolygons—and the boundary element method
(BEM)—a continuum method to calculate the stress field
inside particles. First, we extend the BSEM method to re-
solve the fragmentation using the strain energy formulation
discussed in [27]. In this formulation, the fragmentation pat-
terns are obtained based on the numerical determination of
the ridges of strain energy field inside the particle. The gen-
eration of the child fragments from the parent particle after
fragmentation requires a new algorithm that we define as
the subset separation method (SSM). After integrating the
different algorithms, the DSM achieves full coupling between
the discrete particles and the continuum field inside them,
which effectively replaces the broken particles at each time
step based on their strain energy field.

A validation test for the DSM is performed, and the results
are rigorously compared against the experiments of Cantor
et al. [15]. Then a series of simulations of an oedometric
test are conducted to compare the DSM with three existing
replaceable particle methods. The comparison and analysis
mainly focus on the following aspects: (i) morphological
changes of particles [28], (ii) spatial distribution of breakage
events and their relationship with the contact force chain,
and (iii) particle size distribution curves. Simulation results
indicate that the DSM overcomes the crucial problems of
stability, accuracy, and artificial constraints on postbreakage
replacements in the existing methods.

The paper is organized as follows: the methodology of the
three modules is presented in Sec. II. The validation with the
pentagonal packing is conducted in Sec. III. A comparison
study of different replaceable particle methods using Voronoi
particles is provided in Sec. IV. The conclusions are made in
Sec. V.

II. METHODOLOGY

In this section, we formulate the framework for the DSM,
which covers the three key modules, namely the BSEM
method for calculation of strain energy field, the theoretical
framework for particle fragmentation based on strain energy,
and the SSM postbreakage replacement algorithm. The first
two modules are direct implementations of our methods pre-
sented in [23,24] and [27]. Therefore, we mainly focus on
showing their concepts, functionalities, and incorporation in
the DSM. The formulation of the postbreakage algorithm

(SSM)—the key innovation and most critical component of
the DSM—is presented in detail in this paper.

A. Calculation of the particle stress field using the boundary
spheropolygon element method

We first introduce the module to calculate the strain energy
field on the particle, i.e., the BSEM. It couples the spheropoly-
gon element method—a discrete method for irregular particle
dynamics—and the boundary element method—a continuum
method for inner particle stress calculation—to govern the
breakage process in a far more accurate way than when using
the averaged stress tensor. The framework of the BSEM is
summarized in Figs. 1(a)–1(c) by taking a loaded irregular
particle under equilibrium as an example.

To calculate its stress field, we first generally consider
the particle—under its local coordinate system (x, y)—as
a linearly elastic, homogeneous domain � confined by its
boundary �, i.e., Fig. 1(b). The domain is subjected to
the displacement boundary u(x) = ū for x ∈ �u and traction
boundary t (x) = t̄ for x ∈ �t with �u ∪ �t = � and �u ∩
�t = ∅. Notably, the boundary condition for the particle is
purely traction-based.

We then apply the standard boundary integral equation
[23], and we obtain its discretized form using N constant
boundary elements generated along the outer edges of the
particle as shown in Fig. 1(c). By assembling the discretized
elements, one can obtain the matrix equation AU = BT ,
where U = [u1, u2, . . . , uN ] and T = [t1, t2, . . . , tN ] are the
assembled elemental displacement and traction vector, respec-
tively, and the coefficient matrices A and B are constructed
using the fundamental solutions as explained in [23].

Next, we import the contact forces into the traction vector
T . Based on the axial projection of contact location in (x, y),
a contact force f is assigned to the corresponding boundary
elemental traction vector after being divided by the length of
the element. As presented in Fig. 1(c), the contact forces f α

and f β are assigned to their corresponding boundary elements
as tα and tβ . The contact-free elements have a zero value for
their traction vectors. Since T is now determined through the
contact forces, the matrix equation can be easily solved by in-
verting the coefficient matrix A to obtain the unknown vector
U . The field of Cauchy stress σ (x) can then be calculated as

σi j (x) =
∫

�

Dki j (x)tkd� −
∫

�

Ski j (x)ukd� (i, j, k = 1, 2), (1)

where Di jk and Si jk are the Kelvin fundamental solutions [23].
Based on Eq. (1), the elastic strain energy density can be con-
veniently calculated, which will be used for the determination
of fragmentation in the second module.

B. Fragmentation criteria based on particle strain energy field

We address the second module after the completion of the
BSEM, namely the fragmentation based on the strain energy
field [27], which is illustrated in Figs. 1(d)–1(f). The fragmen-
tation of a particle is the coalescence of its inner damaged
domains caused by the increase of local strain energy. This
advanced theory allows one to determine both the occurrence
of breakage and fracture planes using an equivalent stress ψ

associated with elastic strain energy We = ψ2/2E , which is
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FIG. 1. The three modules of the computational framework of inner particle stress and fragmentation calculation. (a) A loaded particle is
in equilibrium with a pair of contact forces f α and f β ; (b) the particle is represented as a continuum domain with a local coordinate system;
(c) the particle boundary is discretized, and the boundary tractions tα and tβ are assigned to the corresponding elements (red lines); (d) the
elastic strain energy field is calculated; (e) the damage domains (in lime) and a connection point ci (red dot) are calculated; (f) the fracture plane
(red dashed line) is determined; (g) the subset separation method is applied to the polygon; (h) the polygon is separated into two polygonal
fragments.

written as

ψ (σ, ν) = σν

[
2

3
(1 + ν) + 3(1 − 2ν)

(
σm

σν

)2]1/2

, (2)

where σν and σm denote von-Mises and hydrostatic stress,
respectively, E is Young’s modulus, and ν is Poisson’s ratio.
Demonstration of the elastic strain energy field inside a parti-
cle is shown in Fig. 1(d).

We first determine the breakage criterion satisfying

ψ (σ, ν)|ci = ε,

‖∇ψ |ci‖ = 0, (3)

where ∇ is the gradient operator, ε is the lower bound of
ψ that delimits the damaged domains, which is lime-colored
in Fig. 1(e), and Pi is the location where damaged (colored)
domains first coalesce, which is called the connection point
and is denoted by the red dot in Fig. 1(e). In this work, we
fully adopt this criterion to determine the breakage of irregular
particles.

Next, we retrieve the fracture planes using the connection
and contact points. We define the fracture planes as straight
lines between a pair of contact points. This simplification
greatly reduces the complexity of geometrical handling while
providing a good approximation for the ridges of the strain
energy topography [29,30], which was used by the previous
theory [27].

For replacing a particle that is deemed broken, a series of
connection lines are first made between any pair of contact
points. These lines are regarded as potential fracture planes.
To handle the potential nonexact collinearity between the

connection lines and points, we define that an actual fracture
plane is a connection line that has the minimum point-to-line-
distance with a connection point. The number of connection
points equals that of fracture planes. Taking Fig. 1(f) as the
example, the connection line is generated to link the contact
points of f α and f β . It is then further determined as a fracture
plane due to the location of ci. In this way, the fracture planes
are generated for the calculation of replacements in the next
module.

It needs to be noted that the numerical examples in the
original study [27] were conducted using circular particles.
However, the theory imposes no constraint on particle geom-
etry. This is because the theory was developed only based on
Griffith’s elastic fracture mechanics and elastic strain energy
with no assumption of the domain shape. Hence, the theory is
also applicable to irregularly shaped particles.

C. Subset separation method

We introduce the last module of the DSM in this section,
namely the subset separation method, which subdivides a
particle based on its fracture planes, as shown in Figs. 1(g)
and 1(h). To better understand the advantages of the SSM,
we first revisit the limitations and numerical challenges of
existing replacement methods.

Replacing the original particle with its broken parts is the
crucial step for the breakage algorithm. Its application to non-
circular particles could effectively avoid problems such as loss
of mass and numerical discontinuity of contact forces, which
is inevitably produced by the replacement method of circular
particles. However, the separation of an arbitrary polygon is
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geometrically challenging. It is highly difficult to calculate
all the possible scenarios for the breakdown of particles into
new particles because of uncertainty in the orientation and the
number of fragmenting lines. The existing replacement meth-
ods for irregular particles are limited to the case of separating
the polygon with a fixed number of straight fragmenting lines
that all cross through its original geometrical center [14–16].
In this case, the orientation of the fragmenting lines is the only
unknown variable that is obtained from the averaged stress
tensor of the particle. These separation modes are not ideal
for the replacement of fragments based on the inner particle
stress state because they introduce artificial constraints on
the number and geometry of new fragments and therefore
compromise the accuracy of the breakage simulation.

In this paper, we develop a polygon separation algorithm,
the SSM, for the replacement of original particles. The al-
gorithm has no limitation on the shape of the particle, the
number, and the orientation of the fragmenting lines, or the
constraint of the original geometrical center. The separation of
the particle is only defined by straight fragmenting lines with
no other artificial constraints applied. Convex polygons are
used here as a demonstration of the SSM, but it can be equally
applied to the concave polygons after dividing the concave
polygon into convex subdomains.

The principle of the SSM algorithm is to find the vertices
of each new polygon fragment using the intersection of sub-
sets defined by the fracture planes. These vertices are taken
from three types of points generated by the fracture planes
(Fig. 2): the vertices of the original polygon (blue dots), the
intersection points between a fracture plane and the polygon’s
boundary (green dots), and the intersection points between
pairs of fracture planes (red dots). We define here the col-
lection of all these points as the Set . If two points spatially
coincide with each other, they will not be repeated in the set
due to its mathematical definition.

The second step of the SSM algorithm is to construct the
subsets. As we can see from Fig. 2(a), a fracture plane A
separates the blue dots into two groups, one above and one
below, and thus generates two Subsets, namely Aα and Aβ .
The points (blue dots) above or on A are assigned to subset
Aα , and those below or on A are assigned to Aβ . The points
located at A (green dots) are assigned to both Aα and Aβ . This
location-based rule is also applied for the red dots in Figs. 2(b)
and 2(c). The subsets generated by B (Bα, Bβ ) and C (Cα , Cβ)
in Figs. 2(b) and 2(c) are generated in the same way. Based on
this rule, we obtain a collection of 2n subsets, where n is the
number of fracture planes.

The third step is to calculate the intersection between any
two subsets to obtain the new subsets Si that contain the
vertices of new polygons. The equations for n = 2 and 3 in
Figs. 2(b) and 2(c) can be written as follows:

n = 2, S1−4 =
{

S1 = Aα ∩ Bα, S2 = Aα ∩ Bβ,

S3 = Aβ ∩ Bα, S4 = Aβ ∩ Bβ,
(4)

n = 3, S1−8 =

⎧⎪⎨
⎪⎩

S1 = Aα ∩ Bα ∩ Cα, S2 = Aα ∩ Bα ∩ Cβ,

S3 = Aα ∩ Bβ ∩ Cα, S4 = Aα ∩ Bβ ∩ Cβ,

S5 = Aβ ∩ Bα ∩ Cα, S6 = Aβ ∩ Bα ∩ Cβ,

S7 = Aβ ∩ Bβ ∩ Cα, S8 = Aβ ∩ Bβ ∩ Cβ,

(5)

FIG. 2. A polygon with a different number of fragmenting lines
and the resultant set/subsets generated by the fracturing lines. The
blue nodes denote the vertices of the original polygon; the green dots
are at the end points of the fragmenting lines; the red dots represent
the intersection points of the fragmenting lines. (a) n = 1, (b) n = 2,
and (c) n = 3.

where a total number of 2n Si are obtained. A polygon Pi is
defined if the number of points in its corresponding intersec-
tion subset Si is larger than 2. As illustrated in Fig. 3, the
intersection subset S1 in Eq. (5) is obtained by intersecting Aα ,
Bα , and Cα . Since S1 contains four points, the polygon P1 can
be defined using these points as its vertices. To generate P1, the
points in S1 need to be put into the right sequence since a set
(or subset) mathematically does not have a defined sequence
for its points. We first average the original coordinates of the
points in S1 with the total number of points (|S1|). These points
are then arranged in a counterclockwise order by sorting the
angle created by each point with the centroid. In this way, the
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FIG. 3. The new polygons created by the fragmenting lines are
calculated from SSM. The workflow for the generation of the poly-
gon subsets is presented. The polygon P5 does not exist since it
corresponds to the intersection subset S5, which is empty.

polygon P1 can be generated numerically for the replacement.
This rule is applied to all subsets Si.

It is noted that a polygon Pi will not exist if its corre-
sponding intersection subset Si is empty (i.e., |Si| = 0). For
example, the subset S5 in Eq. (5) contains no points since
the intersection between Aβ , Bα , and Cβ is empty and thus
does not form a new polygon. Another scenario for an invalid

FIG. 4. The situation in which the intersection subset only con-
tains one point and does not construct a new polygon.

polygon is when an intersection subset Si only contains one
point (i.e., |Si| = 1). As illustrated in Fig. 4, both A and B cut
across the same vertex of the original polygon. The intersec-
tion subset S2, according to Eq. (4), does not construct a new
polygon, yet it still contains one point, which is marked out
with the black arrow. Either way, these invalid scenarios of
intersection subsets can be easily removed with the condition
of |Si| > 2, which preserves the robustness of the SSM.

The same algorithm to find the subsets and polygons can
be equally extended to the situation with multiple fragmenting
lines n = N as

n = N, S1−2N =

⎧⎪⎪⎨
⎪⎪⎩

S1 = Aα ∩ Bα ∩ · · · ∩ Nα︸ ︷︷ ︸
N

, S2 = Aα ∩ Bα ∩ · · · ∩ Nβ,

· · ·
S2N−1 = Aβ ∩ Bβ ∩ · · · Nα, S2N = Aβ ∩ Bβ ∩ · · · Nβ.

. (6)

Algorithm 1. provides the steps required to calculate the
new polygons from the Set with arbitrary numbers of frac-
ture planes. As shown in Fig. 5, the SSM properly handles
the situations of n = 4 and 5. It needs to be pointed out that
the SSM cannot be directly applied to a nonconvex polygon
since the number of subsets produced by one fragmenting
line may be larger than 2. However, this problem can be
solved by first dividing the nonconvex polygon into a se-
ries of convex polygons [31]. Then, the SSM is applied to
each convex polygon to obtain the intersection of subsets.
The new polygons created by the fragmenting lines can be
obtained by merging these subsets if their mutual boundaries
exist.

D. Considerations on numerical stability

In addition to the three modules, we further provide a
numerical treatment for using spheropolygon erosion to im-
prove the numerical stability while properly approximating
the physical process of particle rearrangement in the post-
breakage stage.

The layout of particles before and after the breakage is
shown in Fig. 6. One can see that the new spheropolygons,
i.e., fragmented particle A and new particle C, are eroded to
a state in which the original contact force—between parti-
cle A and B—vanishes due to the zero overlapping distance.
In reality, the local contacts are dissipated after breakage,
and the fragments are rearranged. This replacement approach

FIG. 5. Examples of n = 4 and 5 calculated by the subset separation method.
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FIG. 6. The contact layout of the original particle and the new
fragment. (a) The vertex is in contact with the boundary before the
breakage; (b) the breakage occurs and the new particles are inserted
and eroded as spheropolygons; loss of mass is marked out with the
dashed red square.

could approximate this dissipation and allow the particle to
be pushed to its new equilibrium state while the local contact
returns to a stable state.

This treatment is also numerically robust as initial overlaps
may apply excessive contact forces on the new replacements,
which harms simulation stability. The loss of mass, as marked
out with the dashed red square in Fig. 6(b), caused by this
geometrical change is inevitable yet trivial compared with the
mass of the whole particle.

E. DSM numerical procedures

The complete program of the DSM was developed using
the C++ language for further validation and application. The
numerical procedures within one-time step 
t correspond to
an extension of our previous BSEM algorithm and can be
summarized as follows:

(i) Contact detection and force calculation of the
spheropolygon particles.

(ii) Update the velocity v and the angular velocity φ of each
particle.

(iii) Update the vertices of each particle.
(iv) Dilate the particle boundary for the inner particle stress

analysis.
(v) Calculate the failure planes based on the stress state of

the particle.
(vi) Calculate the shapes of the replacements for the broken

particles in the current step (SSM).
(vii) Erode the new polygons based on the nonoverlapping

condition.
(viii) Insert the new particles and update the contact list.

III. NUMERICAL TESTS

A simulation of the oedometric compression test is per-
formed in this section to validate our breakage method. The
performance of mass conservation and contact stability is also
rigorously analyzed. The basic configuration of the particles,
boundary conditions, and simulation parameters is based on
the research conducted by Cantor’s team [15]. They per-
formed both experimental and numerical tests to validate the
split-cell method in their paper. The bottom and side walls
were rigid, and the vertical compressive load was applied at
the horizontal bar located at the top of the sample. The mate-
rial properties and simulation parameters—based on Cantor’s

TABLE I. The material parameters and material properties for
the oedometric compression test.

BSEM simulation parameters

kn Normal stiffness 6.0×105 N/m
kt Tangential stiffness 2.2×104 N/m
μ Friction coefficient 0.74

t Time interval 5.0×10−4 s
Vd Verlet distance 0.2 cm

Material properties

G Shear modulus 2.1×102 MPa
ν Poisson’s ratio 0.3
ρ Density 1.2 g/cm2

tests—for the BSEM simulations in this paper are provided
in Table I.

Algorithm 1 The subset-separation method

Input:The Set has a total number of M points p, n = N
number of fracture planes.
Output: New polygons Pi, i = 1, . . . , 2N .

1: for k = 1− > N do
2: for j = 1− > M do
3: if pj above the kth plane then
4: pj assigned to subset kα

5: else if pj below the kth plane then
6: pj assigned to subset kβ

7: else if pj is located on the kth plane then
8: pj assigned to both subset kα and kβ

9: end if
10: end for
11: end for
12: for i = 1− > 2N do
13: Si = intersection of subsets
14: if |Si| < 2 then
15: invalid case, no polygon Pi

16: else if |Si| > 2 then
17: valid case, rearrange sequences of p in Si for Pi

18: end if
19: end for

The particles in the original paper were made by blending
plaster powder with water in the molds and drying it out in an
oven; some of the material properties were not provided. The
shear modulus, Poisson’s ratio, and density are set according
to the experiment of Jiang et al. [32], who used gypsumlike
three-dimensional (3D) printing material for Brazilian tests.
In the simulations, particles are regarded as rigid bodies. Their
breakage is caused by the external compression load instead
of the self-weight. Therefore, these material properties have
only a minor influence on the final results. The simulations
presented in this section are also performed with slightly
varied parameters, and these results also support the conclu-
sion that the material properties have only a minor influence.
The critical parameters such as friction coefficient and the
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FIG. 7. The particles and fragments obtained by the DSM (right) at different times and the corresponding comparison with the experimental
(left) and split-cell (middle) results obtained from Cantor et al. [15]. (a) t = 0.0 s, (b) t = 0.9 s, (c) t = 1.1 s, and (d) t = 2.4 s.

critical energy ε are set to values that are consistent with
Cantor et al.’s research [15]. In particular, the value of ε =
2.802 51 MPa is numerically obtained through a Brazilian test
(r = 1.0 cm) with the critical force (F = 150.79 N) that was
provided in the experiment. Hence, the simulation parameters
are valid and compatible with Cantor et al.’s experimental test.
The circumdiameter of the particles ranges between 1 and
3 cm, and the rectangular container is approximately 10 cm
wide and 9 cm high. The size effect on the particle strength

is ignored since the difference in size between the largest and
the smallest particle in the system is negligible [15].

Results of the experimental images and the split-cell
method conducted by Cantor et al. [15] are shown at the left
and middle images of Fig. 7, respectively; the corresponding
simulation results of the DSM are shown in the right column.
A series of characteristic fracture planes are marked out in the
experimental images (left column) with dashed red lines. It
can be observed from these images that the most distinctive
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FIG. 8. (a) The variation of the total mass of the granular sample; (b) the variation of average velocity and angular velocity of the granular
sample.

feature of fracture planes is that they generally form along
the direction of connection lines between contact points. This
relation has been observed in many laboratory studies [30].
Our previous studies [23,27] prove that contact forces govern
the distribution of the inner particle strain energy field, which
confines and determines the fracture planes. As the numerical
implementation of this theory, the DSM properly captures
this dominant feature at each measured time step. As marked
out with dashed red lines in the right column of Fig. 7, the
direction of fracture planes calculated by the DSM is consis-
tent with the transmission of strain energy produced by the
contact forces; both breakage locations and the geometry of
new particles show a good visual match with the experiments.
The split-cell method in the middle column of Fig. 7 provides
less satisfactory results, which cannot properly simulate the
progressive breakage along the contact pairs and force chains.
Also, the split-cell method generates the so-called locking ef-
fect, as marked out in dashed red circles in Figs. 7(c) and 7(d),
which repetitively breaks strip-shaped fragments from one
original particle. This effect is a numerical artefact produced
by the cut-in-halves strategy used in the split-cell method, and
it will be further discussed in the latter part of the paper.

It needs to be noted that differences between the experi-
ment and results of the DSM are still apparent, such as the fact
that the DSM generated more fracture planes at the bottom
of the container. These disagreements are mainly caused by
the initial configuration in the numerical test and the plastic
behavior of the experimental material, which is not perfectly
elastic. Nevertheless, the simulation results show the excellent
performance of the DSM, which combines the inner particle
strain energy field criterion with the subset separation method
as the replacement mode. Namely, the SSM enables the DSM
to capture fracture planes that match well with the experi-
mental results and avoid the locking effect. In particular, in
Figs. 7(b) and 7(c) the DSM captures a series of characteristic
fracture planes that occurred at the top-left area of experimen-
tal images. The split-cell method shown in the middle column
of Fig. 7 does not provide an accurate result for breakage loca-
tions or fracture planes; the first breakage occurs horizontally
in the middle area. Then the locking effect is generated at the
top-left/right of the sample from Figs. 7(c) and 7(d), which
does not occur in the results of the DSM.

It is necessary to examine the conservation of mass here
since the breakage of the BSEM involves the dilation of the
original particle and the erosion of the fragments. The varia-
tion of the relative mass is presented in Fig. 8(a). The number
is obtained from the current total mass at a given time divided
by the total mass at the beginning. Results indicate that the
total mass is decreasing as the simulation progresses due to the
erosion of new particles. However, our replacement method
has the advantage that it conserves mass within a small vari-
ation of 0.08%, which is negligible relative to the whole
granular sample. This loss of mass can also be compensated
by slightly increasing the density of the particles. The small
loss of mass could also be interpreted as the production of
fine powder, which is often observed when breaking frictional
materials.

The variation of the averaged speed and averaged angular
speed is shown in Fig. 8. These values are obtained by di-
viding the sum of particle velocity’s (or angular velocity)’s
norm by the number of particles. The increase of the velocity
before t = 0.3 s is produced by the adjustment of initial con-
figurations to reach equilibrium on each particle and quickly
dissipated by friction. The quasistatic compression begins at
t = 1.98 s. It indicates that the fluctuations of the kinetic en-
ergy (particle velocity) are generated by the breakage events.
In reality, this phenomenon is caused by the release of defor-
mation energy and the disruption of the contact equilibrium,
which is also accompanied by acoustic signals. This part of
the energy distribution, as well as its dissipation, is still an
open debate. In the numerical simulation, it is ideal to keep
the fluctuation to a minimum for computational stability. It
can be observed that the fluctuation is properly controlled and
dissipated through friction. The values of average velocity are
mostly below 1.0 mm/s, which is the velocity of the com-
pression bar (loading bar at the top of the device). Numerical
stability before and after the breakage is well preserved.

IV. COMPARISON WITH IRREGULAR REPLACEABLE
PARTICLE METHODS

In this section, a comparison is conducted between the
DSM and three other existing irregular replaceable particle
methods. A two-dimensional oedometric test is adopted with
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TABLE II. The breakage criteria and the corresponding cutting plane for each method. The top-left corner is the equation of averaged
stress tensor σ, where xc is the particle centroid and xp

n is the contact position; F is the contact force vector, Fmax and Fmin are its equivalent
normal force pair; V is the particle volume, r is its circumradius, t is the unit thickness; N is the total number of contacts. σt and σs denote the
tensile and shear stress; σ1 and σ2 are the maximum and minimum principal stress; σv is the von-Mises stress. σT and σC represent the uniaxial
and tensile compressive strength, respectively. θp is the angle of the major principal plane of σ.

σ = 1

V

∑N
n=1(xc − xp

n )Fn Breakage criterion Cutting planes

σt = (|Fmax| − 3|Fmin|)/πrt
Split-cell method |Fmax| = σ1πrt/2, |Fmin| = σ2πrt/2 θp + π/2

σt > σT

σv = (σ 2
xx + σ 2

yy − σxxσyy + 3σ 2
xy )1/2

Cross-cut method θp ± π/4
σv � σc

(σ1 < 0) ∨ (σ2 < 0) ∨ (σ2 < −σC ) or
Mohr-Coulomb method (σ1 > 0) ∨ (σ2 > 0) ∨ (σ1 > σT ) or θp + π/4

|σs = (σ1 − σT σ2/σC )| > |σT |

a larger sample with spheropolygons generated by Voronoi
tessellation. In previous papers, DEM simulations were per-
formed using Voronoi polygons to study stress-strain response
[33] and induced anisotropy [34]. This model was later ex-
tended to spheropolygons by morphological erosion of the
Voronoi polygons [26]. Here we present an advanced version
of these previous models that not only allows the visualization
of force chains with the same resolution as in photoelastic
experiments [35], but also accounts for particle fragmentation
during quasistatic loading. The computational performance
regarding morphological changes of individual particles and
the PSD is rigorously analyzed, and the numerical effects of
different particle replacement models are compared.

A. Discussion of the existing methods

The existing replaceable methods for irregular particles can
be summarized into three categories based on their break-
age criterion and geometrical handling mode: the split-cell
method [15], the cross-cut method [14], and the Mohr-
Coulomb method [16,36]. The breakage criteria and their
corresponding replacement method are shown in Table II. It
needs to be pointed out that the cross-cut and Mohr-Coulomb
methods were originally proposed for three-dimensional
cases, yet their numerical characteristics are not restricted by
the number of dimensions.

An illustration of the replacement schemes is shown in
Fig. 9. Notably, the averaged stress tensor σ is calculated
based on the real contact forces (F1, F2, F3) in Fig. 9(d),
which further gives the directions of major and minor princi-
pal planes. The split-cell method first decomposes the contact
forces on the particles into two pairs of opposing forces,
Fmax and Fmin, that are perpendicular to one another, and
both cross the centroid of the particle in the direction of
major (σmax) and minor (σmin) principal stress of σ, respec-
tively. The breakage is determined by the magnitudes of the
equivalent forces. A broken particle will be separated along
the plane of Fmax [Fig. 9(a)]. The cross-cut method breaks
the particle based on the von-Mises stress calculated from
the averaged stress tensor. A broken particle will be cut into
four parts along the principal plane θp ± π/4 [Fig. 9(b)]. The
Mohr-Coulomb method breaks the particle if Mohr’s stress
circle of the averaged stress tensor touches a predefined failure
surface. The particle will be separated along the plane of
θp + π/4 [Fig. 9(c)]. From Figs. 9(a)–9(c), one can see that
the predefined geometrical replacement mode in the split-cell
method [Fig. 9(a)], the cross-cut method [Fig. 9(b)], and
the Mohr-Coulomb method [Fig. 9(c)] each lead to differ-
ent fracture planes (solid red lines). It is difficult to justify
which approach is better since they are all solely based on
the averaged stress tensor, which lacks physical meaning
for the intraparticle breakage. In contrast, our DSM method

FIG. 9. The replacement method used for each replaceable particle method. The actual contact forces are shown in (d) along with the
results of DSM. (a) The split-cell method, (b) the cross-cut method, (c) the Mohr-Coulomb method, and (d) the damaged-separation method.
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FIG. 10. The scheme of the “locking effect” generated by the replacement mode in the split-cell method. Black arrows are loading forces;
black dots denote the centroid of the polygon; blue lines and green lines are the fracture planes and connection lines between contact points,
respectively.

calculates the inner particle stress field of the particle and
uses this to predict the fracture planes [Fig. 9(d)]. Hence, our
method is based on more realistic physics because it requires
none of the nonunique assumptions of the other three methods
to obtain the fracture planes. The only simplification of our
method is that the fracture plane is straight, whereas, in reality,
the geometry of the fracture may be more complicated.

It can be seen that existing methods rely solely on the
averaged stress tensor for determining the breakage and shape
of the replacements. These criteria, whether the maximum
tensile stress, Mohr-Coulomb failure surface, or von-Mises
stress, often fail to properly represent the breakage process
as the averaged stress tensor oversimplifies the stress state of
the particle [23,27]. Meanwhile, the replacement modes of
the existing methods are also problematic since the fracture
planes are restricted to pass through the centroid of the origi-
nal particle.

For the split-cell method, this restriction commonly causes
one of the postbreakage particles to bear the same load as the
original particle. As shown in Fig. 10, the contact forces are
preserved after the replacement, and the force equilibrium is
maintained since the fracture plane always crosses the cen-
troid. Breakage is locked by this numerical effect. In reality,
a breakage event alters the force equilibrium and causes a de-
crease or disappearance of the original contact forces through
the rearrangement of the fragments. The cut-into-halves strat-
egy used by the split-cell method cannot properly capture this
process and suffers from this numerical error. This “locking
effect,” as mentioned earlier in this paper, was addressed by
Eliáš [14] when he formulated the cross-cut method to avoid
this issue. As an improvement, the shearinglike separation
strategy used by the cross-cut and Mohr-Coulomb methods
attenuates this issue by allowing new particles to rearrange
through sliding after the replacement. The original contact
forces can be slowly dissipated with the rearrangement of
new particles. However, the effectiveness of this approach is
sensitive to an increase in the frictional coefficient. The DSM
separates the particles along the line determined by the strain
energy field governed by the contact forces. The centroid is
no longer a restriction on the fracture planes. As illustrated
in Fig. 6, the original contact forces, as well as the force
equilibrium, are canceled out through the erosion after the
replacement. The fragments are allowed to rearrange to a new
static state.

Geometrical patterns generated by the replacement modes
also need to properly simulate the morphological changes of
broken particles, which would strongly affect the accuracy of
the PSD. A representative laboratory study was conducted by
Karatza et al. [28] using x-ray tomography to reveal the break-

age progress of spherical particles in the oedometric test. They
identified three breakage types that are commonly observed in
their experiment: chipping, splitting, and fragmentation. The
types are further illustrated in Fig. 11.

Existing replacement modes can only simulate one of the
breakage types. The split-cell method and the Mohr-Coulomb
method can only produce splitting since the cut-into-halves
strategy is used for the replacements. The cross-cut method
can only produce fragmentation type of fragmentation be-
cause a broken particle is always cut along the planes crossing
at the centroid. The DSM can produce all three breakage types
since it has no restriction on the number or the location of the
cutting planes.

Breakage types calculated based on each method are pre-
sented in Fig. 12. The results further demonstrate that the
DSM correctly produces the corresponding breakage type
based on the loading conditions for N = 2, 3, 4. For a co-
ordination number N = 2, the split-cell method and the
Mohr-method provide the split type of breakage, both the
number and the shape of the fragments are properly approx-
imated. The DSM also produces the split type of breakage,
but the mass ratio between two fragments is more realistic.
The cross-cut method fails to provide a good result due to the
nature of its replacement method. For coordination number
N = 3, 4, the cross-cut method has better performance than
the other two methods since the fragmentation breakage type,
as observed in the x-ray experiment [28], is far more common
than the split type of breakage. However, the cross-cut method
still cannot produce the chipping type of breakage that ranked
as the second most frequent breakage type [28]. The DSM can
produce the chipping type of breakage if the concentration of
contact forces is located near the boundary of the particle. This
phenomenon is further illustrated in Fig. 12 for N = 4.

FIG. 11. The three breakage types: chipping, splitting, and frag-
mentation. (a) chipping, two fragments have extremely different
sizes generated from the concentration of the contact forces near
the boundary. (b) splitting, the particle is separated into two roughly
equal parts. (c) fragmentation, the particle is separated into three or
more roughly equal parts.
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FIG. 12. The breakage types generated with different replacement methods under various loading conditions and coordination numbers.
The first column is the loading configuration with black arrows. The second column shows the results of the split-cell method. The third column
is the results of the cross-cut method. The fourth column is the Mohr-Coulomb method. Results in the last column are produced by the DSM.
The subscripts s, f , and c denote the breakage types of splitting, fragmentation, and chipping. (a) N = 2, (b) N = 3, and (c) N = 4.

B. Oedometric test with Voronoi spheropolygons

Oedometric tests are performed with the four methods
specified above (split-cell method, cross-cut method,
Mohr-Coulomb method, and our damaged-separation
method) to further validate their differences and advantages.
The sample is generated with a Voronoi tessellation and is
packed with gravity before the loading test. The packing
sample is 137 cm wide and roughly 110 cm high. Simulation
parameters are the same as in Table I, except for the frictional
coefficient μ = 0.4. The compressive bar is assigned with a
constant velocity vy = −1.0 mm/s for 10.0 s.

The final breakage for each method is presented in
Figures 13(a)–13(d), which contain zoomed figures of the bro-
ken particles. As discussed earlier, the split-cell suffers from
the locking effect in Fig. 13(a). The strip-shaped fragments
are repetitively produced in a local region. This unrealistic
pattern severely compromises the accuracy of the split-cell
method for calculating the breakage effect on both the micro-
and macroscale. It can be observed from Figs. 13(b) and 13(c)
that the cross-cut and Mohr-Coulomb methods both mitigated

this problem by allowing the particle to slide along the cut-
ting plane. The DMS does not have the issue of the locking
effect since the forces are canceled by the new replacements
[Fig. 13(d)], which allows the local particles to be rearranged
to a new force equilibrium.

The final spatial distributions of fragments for each test are
shown in Figs. 14(a)–14(d) based on their centroids. It can be
observed in Figs. 14(a) and 14(b) that the split-cell method
and the cross-cut method both have the problem of localiza-
tion of the breakage events. Most of the breakage events occur
within a vertical or horizontal narrow band. Particle breakage
should be progressively spread with the contact force trans-
mission, which is induced by the compressive pressure, inside
the granular packing. This strong directional localization of
breakage events does not represent a realistic mechanical be-
havior, but a numerical artefact created by the geometrical
replacement modes. As we can see, the results provided by the
Mohr-Coulomb method and the DSM in Figs. 14(c) and 14(d)
are quite similar. Distributions of fragments are not localized
in a particular region or direction.
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FIG. 13. Final breakage patterns of particles simulated with each replaceable particle method. The black color represents the intact and
original particles; the red color represents the new replacements. (a) The split-cell method, (b) the cross-cut method, (c) the Mohr-Coulomb
method, and (d) the DSM method.

The orientation of fracture planes (which ranged from 0◦
to 360◦) is another indicator of whether the morphological
changes caused by particle breakage are correctly simulated.
Fracture planes determine the shape and mass of the new
fragments, which would further affect the PSD and the evo-
lution of the force chain network. The directional frequency
of fracture planes in each test is shown using polar histograms
in Figs. 15(a)–15(d). The results indicate that all the methods,

which adopted the centroid as the constraint in the geometri-
cal replacement mode, have a strong polarizing pattern. The
orientation of fracture planes has one or two dominating an-
gles. For the split-cell method, the angle is nearly 90◦/270◦

with the highest frequency of 10. For the cross-cut and
Mohr-Coulomb methods, the fracture orientations concen-
trate along two angles (15.2◦/195◦, 105.2◦/275.2◦) and
(45.6◦/225.6◦, 157.3◦/337.3◦) with the highest frequency

FIG. 14. Spatial distribution of the fragments generated by each method: (a) the split-cell method, (b) the cross-cut method, (c) the
Mohr-Coulomb method, and (d) the DSM method.
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FIG. 15. The directional frequency of fracture planes in each replaceable particle method: (a) the split-cell method, (b) the cross-cut
method, (c) the Mohr-Coulomb method, and (d) the DSM method.

of 12◦. The inadequacy of the centroid constraint is the
main reason for the numerical polarization of fracture planes.
Meanwhile, the averaged stress tensor used by these methods
oversimplifies the actual stress field that governs the fracture
planes. Hence, the orientation of fracture planes at the particle
scale tends to be consistent with the fracture angle calculated
as if the granular packing is one whole continuum. For the
DSM, this polarization is much weaker than the other three
methods with the highest frequency of 7◦. This is because
its geometrical replacement mode does not have a predefined
limitation, and the fracture planes are determined based on the
inner particle strain energy field.

The results of the PSD generated by each method are
shown in Fig. 16. In particular, the PSD of the cross-cut
method has a clear “lump” at the encircled part. It is caused by
the fact that the particles are always separated into four parti-
cles of similar size and produce a concentration in the particle
sizes [14]. This problem makes the cross-cut method less ap-
propriate to reproduce the breakage effect at the macroscale.
The other three methods produced a relatively similar result.
The main difference is the tail of the PSD, where the DSM
generated more particles that are smaller than 1.5 cm and
thus has a longer tail. It indicates that the DSM has a better

FIG. 16. The particle size distribution provided by the replace-
ment methods. The black dashed circle marks out the lump that is
numerically caused by the cross-cut method.

ability to capture the generation of small particles and produce
a more realistic PSD.

To further examine this feature of the DSM, the percent-
age of the different breakage types generated by the DMS is
shown in Table III. The definition of each type is identified
through the mass ratio mr of fragments. The value of mr is
calculated as mr = mfra/maver, where mfra and maver represent
the minimum mass of the fragment and the averaged mass of
particles at the initial time. It can be seen that fragmentation
and chipping are the dominant breakage types, which occupy
45.6% and 50.06% of the total breakage events, and splitting
occupies only 4.34% of the total breakage events. This result
is consistent with the experimental data of Karatza et al. [28].
Therefore, the long tail of PSD mainly consists of the chipping
and fragmentation types of breakage, which can be regarded
as a more realistic result of oedometric compression.

By removing the limitation of using the particle cen-
troid in the breakage, the DMS provides all three breakage
types: chipping, splitting, and fragmentation. In particular, the
percentage of the fragmentation and the chipping can be sim-
ulated since the cutting line is determined based on the strain
energy field. These attributes allow the DSM to be used to
study the morphological changes due to fragmentation, while
the other methods can only produce a single type of breakage
and do not fully recognize the important link between the
cutting plane and the contact position.

As a final validation of our simulation results, we nu-
merically plotted the force chain network inside the granular
material [23,24]. Figures 17(a) and 17(b) show the overall, as
well as the zoomed, visualization of the standard photoelastic
quantity I = (σ1 − σ2), where σ1 and σ2 denote the maximum
and minimum principal stress on each particle. The calcu-
lation is conducted at t = 7.0 s in the DSM simulation to
have fully transmitted force chains. The contact between the
compression bar and the granular packing first occurs at the
right side due to the initial configurations, where the root of

TABLE III. The percentage of each breakage type in the DSM
simulation as a function of the mass ratio of the fragments.

Breakage types Splitting Fragmentation Chipping

Mass ratio mr mr > 0.4 0.4 � mr � 0.1 0.1 > mr

Percentage 45.6% 50.06% 4.34%
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FIG. 17. (a) The force chain network I = (σ1 − σ2) of the granular sample and (b) zoomed areas. The calculation is conducted at
t = 7.00 s in the test of the DSM.

the force chain network is located. Figure 17 indicates that the
spatial distributions of fragments, fracture planes, and broken
particles in the DSM method are perfectly consistent with the
force chain network.

V. CONCLUSIONS

In this paper, we implemented a replaceable particle
method, namely the damage-separation model (DSM), to
the boundary-spheropolygon element method (BSEM) for
simulating particle breakage. This is a highly efficient and
high-resolution DEM model that allows fragmentation based
on the internal stress field of the particles. More precisely,
the breakage criterion is governed by the inner particle strain
energy field. The replacement scheme of the new particles is
then determined by the connection points—calculated from

the strain energy—and the position of the contact points. This
method has unique advantages for simulating the fundamental
mechanism of particle breakage at both the individual particle
and granular level.

A geometrical algorithm, namely the subset separation
method (SSM), is developed and incorporated into the DSM
to handle the recognition and replacement of fragments. This
algorithm allows a convex polygon to be cut based on a set
of arbitrary cutting lines. The algorithm removes previous
artificial restrictions on the number of fragments and the ori-
entation of fracture planes that is used in current approaches
based on the averaged stress tensor. The SSM enables the
DSM to better simulate the morphological changes of new
particles.

Oedometric compression tests based on the existing liter-
ature and Voronoi diagrams are performed as validation and
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demonstration of the breakage method at the granular level.
The conservation of mass is well preserved, and the numerical
stability of the breakage is properly maintained. A compar-
ative study using different replaceable particle methods is
further conducted and indicates that the DSM shows the best
performance for simulating the breakage process. The DSM
avoids the numerical errors of the locking effect, the polariza-
tion of fracture planes, and the lump in the PSD that occur
in average-stress-tensor-based approaches. All three breakage
types observed from the experimental data can be simulated
using the DSM, and morphological changes are correctly cap-
tured using the SSM.

In conclusion, the advantage of the DSM is the preserva-
tion of the physical information during particle breakage and
reduction of the interference of artificial effects in the numeri-
cal simulation. It gains its superior accuracy by using the inner

particle stress field to determine breakage, largely removing
the use of empirical parameters and the limitations of the
geometry of the replacements. The authors expect the DSM
to make a lasting contribution to the study of the mechanism
of particle breakage.
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