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This article reveals a specific category of solutions for the 1 + 1 variable order (VO) nonlinear fractional
Fokker-Planck equations. These solutions are formulated using VO q-Gaussian functions, granting them signif-
icant versatility in their application to various real-world systems, such as financial economy areas spanning
from conventional stock markets to cryptocurrencies. The VO q-Gaussian functions provide a more robust
expression for the distribution function of price returns in real-world systems. Additionally, we analyzed the
temporal evolution of the anomalous characteristic exponents derived from our study, which are associated with
the long-term (power-law) memory in time series data and autocorrelation patterns.
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I. INTRODUCTION

Anomalous diffusion has manifested itself in various fields
of science, such as physics [1–3], chemistry [4,5], biology
[6,7], and socioeconomic systems such as stock markets [8,9].
Although it was proposed for transport and wave propagation
paradigms [10,11], now its relation with other phenomena
is well-established, including but not limited to fractals and
percolation in porous media [12,13], cell nucleus, plasma
membrane, and cytoplasm in biology [14]. Anomalous dif-
fusion is manifested in the process where the mean squared
displacement of the random walker scales with time exhibit-
ing a fractional exponent, as a result of the correlations in
the stochastic process [15,16]. Under specific assumptions, a
fractional version of the Fokker-Planck equation (FPE) can
be employed to describe the time evolution of these sys-
tems’ probability density function (PDF). Nonlocal fractional
derivatives are relevant when dealing with the Levy process,
for example [17,18]. Intuitively, a nonlocal operator requires
information from a whole interval when operating on a func-
tion, in contrast to local operators that only need information
from a single point in their immediate vicinity [9,19], for
a comprehensive review, see Ref. [20] and the references
therein. This fractionalization can occur in the time and the
space derivatives of the FPE. While the linear fractional FPE
is suitable for describing a wide range of systems with anoma-
lous diffusion, its nonlinear version has been implemented
in more diverse domains, including biological systems [21],
thermostatistics [22–26], and stock markets [8,9,27]. It was
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also shown that the PDF of the detrended price return of
the S&P500 index is governed by the porous media equa-
tion (PME)–which is a nonlinear FPE—through a curve fitting
analysis of the PDFs after collapsing self-similar q-Gaussian
functions [8,9,28].

Despite the relative success of the q-Gaussian distributions
in explaining the time evolution of the PDF of many stochastic
systems, some studies show that the numerically estimated
exponents exhibit slow time dependence. The stock market
is an example where the PDF of price return does not follow a
constant order (CO) nonlinear FPE, or at least has a limited va-
lidity [29], as the price returns of stock market indexes exhibit
characteristic exponents that depend on time [30], aligned
with the central limit theorem (CLT). More specifically, the
stochastic fluctuations in the price return of the S&P500 index
can be modeled using superdiffusive self-similar q-Gaussian
functions and the anomalous diffusion exponent α, which
has initial values (α > 2, q > 1), and then slowly converge
to α → 2, q → 1 corresponding to the Gaussian (normal)
distribution as required by CLT (the same happens to the
diffusion coefficient D) [30]. The diffusion process in a porous
medium is another example, where if the medium structure
or external field changes over time, the CO fractional dif-
fusion is not applicable [31,32]. This characteristic poses
fundamental challenges and introduces the need to reconsider
the governing equation, considering the time dependence of
these exponents. To address this limitation, using “variable-
order” (VO) fractional diffusion equations has been proposed
[29,31,32]. In many complex systems, the inclusion of VO
fractional derivatives can provide a more accurate representa-
tion of their underlying dynamics [33–37].

This paper considers the VO fractional porous media equa-
tion (FPME) with local fractional derivative operators, where
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the characteristic exponents can change slowly with time. The
formalism is kept as general as possible to include a general
time dependence of the exponents. By proposing a separa-
ble form for the solutions, we identify an important class of
solutions that yield the ordinary q-Gaussian solution in the
static (CO) limit. These solutions are not self-similar (SS),
but the self-similarity is retrieved once we take the CO limit.
In the second part of the paper, we relate these solutions to
the PDF of price return in the traditional stock markets and
the cryptocurrency. We assess the VO q-Gaussian function
and inspect how this system approaches the normal diffusion
counterparts over extended periods.

The paper is organized as follows: the constant order (CO)
fractional diffusion process will be presented in the following
section. Section III is devoted to the time-dependent variable-
order exponents and their solutions with and without drift. The
application to the stock markets is studied in Sec. IV.

II. CONSTANT ORDER (CO) FRACTIONAL
DIFFUSION PROCESS

The anomalous diffusion is a diffusion process with a non-
linear relationship between the mean squared displacement
and time with an anomalous diffusion exponent α. For any
d-dimensional space, it is characterized by the scaling relation

R(t ) ≡
√

〈r2(t )〉 ∝ tH , (1)

where r(t ) is the end to end distance at time t , 〈...〉 is the
ensemble average and H = 1/α is the corresponding Hurst
exponent. For a normal diffusion α = 2, while for the su-
perdiffusion (subdiffusion) α < 2 (α > 2). The anomalous
diffusion can be due to time correlations, as well as the fractal
structure of the space. An important primitive example of
anomalous diffusion was given by Havlin and Ben-Avraham
for random walks on fractal objects, the PDF of which is given
by [38]

P(x, t ) ∝ R(t )−d f exp

[
−c

(
x

R(t )

) α
α−1

]
, (2)

where d f is the fractal dimension of the space in which the
random walker is doing an exploration process. Other types
of distributions with the same scaling relation between x and
R(t ) are proposed to describe anomalous diffusion processes
in different physical systems, which are special solutions of
the FPEs. These modifications of the FPE may include the
fractionalization of the space as well as the time derivative
operators, and nonlinearization depending on the system that
the FPE is going to describe. Various fractional diffusion
equations have been introduced each of which has its own
advantages and weaknesses [2–4]. A fractionalization of the
derivative can be either local or nonlocal depending on the
(temporal and spatial) nature of the system [39]. The examples
are the Schneider and Wyss time-derivative fractionalization
[40], O’Shaugnessy and Procaccia space-derivative frac-
tionalization [41], Giona and Roman space-time-derivative
fractionalization [42], and more general cases [43].

An important feature in Eq. (2) is related to its scaling
behavior. This equation suggests that for a d-dimensional sys-
tem, r = |x| (where x shows the position of a random walker)

scales with a general function of time φ(t ), so that

x → λx, φ(t ) → λφ(t ), P → λ−d P (3)

(see Appendix A for more details). Here φ(t ) is a time-
dependent function characterizing the anomalous diffusion.
This suggests the following scaling solution:

P(x, t ) = 1

φ(t )d
F

[
x

φ(t )

]
. (4)

The nature of anomalous diffusion is directly calculated
using

R2 = 〈r(t )2〉 ∝
∫

dd x|x|2F

[
x

φ(t )

]
∝ φ(t )2. (5)

The scaling properties of the time series are associated with
the form of φ(t ). In fact, for the solution of Eq. (1) we
have φ(t ) = φSS(t ) where the index “SS” points out the self-
similarity law, given by [8,9]

φSS(t ) ∝ t1/α. (6)

Combining Eqs. (5) and (6), one reaches Eq. (1).
An important well-known example is the fractional Brow-

nian motion (fBm), in which the PDF follows a Gaussian
distribution with a self-similar structure. For a good review
see Appendix B and [44,45]. The Levy-stable distribution is
another example of a self-similar system that has vast appli-
cations in stochastic processes, including the stock markets.
The heavy-tail behavior observed in stock market price fluctu-
ations has been a cornerstone for many scientists in supporting
the use of Levy-stable distributions for modeling the stochas-
tic behavior of the price return [30,46–49].

There are, however, some pieces of evidence indicating that
Levy-stable distributions are not sufficient to describe the styl-
ized facts of the price return. Recent observations of the PDF
of price returns for the S&P500 have shown that they follow
more general distributions [8]. The Levy-stable distribution
provides only an estimation of the stock market fluctuations
at low frequencies where the correlations can be neglected.
However, correlations during the first minutes on the price
fluctuations were observed at high frequencies, making the
Levy regime no longer applicable. Additionally, the character-
istic exponents employed to model the power-law tails in the
PDF of price increments for 1-min time intervals lie outside
the Levy regime [9]. This divergence highlights a common
occurrence in the modeling of complex systems, which can
be attributed to the nonlinear nature of the governing physical
phenomena.

In nonlinear systems, the principles of homogeneity and
superposition do not hold. These systems exhibit a distinctive
property known as nonextensivity, meaning that their corre-
sponding entropy is not additive [50]. A notable example of
nonextensive systems is observed in the PME, which pos-
sesses broad applications in stochastic processes, including
the analysis of stock markets. More accurate models can be
created by introducing a fractional version of the PME. This
extension offers a powerful theoretical framework with the
potential to effectively describe a wide range of stochastic
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systems. The local fractional PME reads [9]

∂ξ

∂t ξ
P(x, t ) = D

∂2

∂x2
P(x, t )ν, (7)

where ξ , D, and ν ≡ 2 − q are the constant parameters to be
found by fitting the data with the time series under investi-
gation. D is the diffusion coefficient in the limit q, ξ → 1
where the normal diffusion is retrieved. Equation (7) admits
solutions in terms of q-Gaussian and generalized q-Gaussian
functions [8,9], which forms an important class of functions
with a wide range of applications [8,51], shown as

P(x, t ) = 1

CqφSS(t )
eq

[
−

(
x

φSS(t )

)2
]
, (8)

where

eq(x) ≡ [1 + (1 − q)x]
1

1−q (9)

is q-exponential function (a generalization of the exponential
function), and Cq is a normalization factor, given by

Cq =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
√

π	
(

1
1−q

)
(3−q)

√
1−q	

(
3−q

2(1−q)

) −∞ < q < 1,

√
π q = 1,

√
π	

(
3−q

2(q−1)

)
√

q−1	
(

1
q−1

) 1 < q < 3.

(10)

In this relation, 	(x) is the standard 	 function. The self-
similar time part reads

φSS(t ) ≡ (D′t )1/α, (11)

where the parameter α = 3−q
ξ

is the anomalous diffusion ex-
ponent associated with the self-similarity of the time series
and D′ ≡ (D/ξ )1/ξ is the modified diffusion parameter to be
estimated using the real data analysis. The evolution equa-
tion of the price return’s PDF can be constructed based on
the q-Gaussian fitting. Originally conceived for studying fluid
propagation in porous media, PME has significantly broad-
ened its scope over time. Now PME is used to investigate any
diffusion process where the diffusion coefficient depends on
the state variable, the most important of which is the stock
market with q-Gaussian PDF [8,52]. In our previous studies,
we investigated the fractional PME with local and nonlocal
fractional derivatives, focusing solely on its solutions for de-
scribing the PDF of S&P500 market index. Considering both
cases, the results obtained from the nonlocal derivatives were
found to be more accurate [9].

Despite the fact that a generalized form of q-Gaussian
PDFs better describes the PDFs of S&P500 data at any time,
the exponents have been shown to vary over time [30]. Solv-
ing Eq. (7) with “time-dependent exponents” introduces a
contradiction because the time dependence of the exponents
should have been considered in the governing equation from
the outset. Such governing equations with time-dependent
exponents are referred to as VO governing equations. The
very important question we should answer is: Which is the
generalized nonlinear fractional Fokker-Planck equation that
governs the PDF with variable orders?

Variable exponents are observed in complex diffusion pro-
cesses [53–57]. The diffusion properties of homogeneous
media are usually modeled by CO time-fractional diffusion
processes, for example, see Ref. [58]. However, in complex
media where heterogeneous regions are present the CO frac-
tional dynamic models are not robust over long timescales.
Additionally, when considering diffusion processes in porous
media where the medium structure or external field changes
with time, the use of CO fractional dynamic models may
not yield satisfactory results [31,32]. In such cases, the VO
time-fractional model emerges as a more suitable approach for
describing space-dependent anomalous diffusion processes
[59]. Previous works on VO diffusion models have made
substantial contributions to the modeling and analysis of com-
plex systems [29,53–57]. Building upon these works, this
paper aims to generalize the PME by incorporating variable
exponents. The investigation focuses on systematically ex-
ploring the problem with variable exponents and solving a
time variable-order porous media equation (VO-PME). The
VO-PME reads

∂ξ (t )

∂t ξ (t )
P(x, t ) = D(t )

∂2

∂x2
Pν(t )(x, t ), (12)

where ξ (t ), D(t ), and ν(t ) ≡ 2 − q(t ) now vary with time.
Some properties of the CO equations cannot be extrapo-
lated to the VO counterpart. For example, while one may be
tempted to derive the effective time-dependent Hurst expo-
nent as H (t ) ≡ ξ (t )

3−q(t ) , it is crucial to exercise caution when
utilizing this expression. The reason is that the definition of
the Hurst exponent is based on the autocorrelation function,
which has not been explicitly obtained for the VO-PME in
this study. Therefore, the aforementioned expression should
be interpreted with care. In the following sections, we find an
important class of solutions for the VO-PME.

III. LOCAL VARIABLE-ORDER NONLINEAR
TIME DIFFUSION EQUATION

In this section, we consider a time-dependent VO-PME as
follows:

∂ξ (t )

∂t ξ (t )
P(x, t ) = D(t )

∂2

∂x2
Pν(t )(x, t ), (13)

where ξ (t ) and ν(t ) = 2 − q(t ) are VO exponents and D(t )
is a slow-varying time-dependent diffusion coefficient. In
this equation the time derivative is fractionalized using a
Katugampola derivative; see Appendix C for the details. Note
that in the limit ξ, ν, D are constant, the solution given by
Eq. (8) is retrieved, i.e., the q-Gaussian distribution. In the
analogy of Eq. (4) (d = 1), we consider the factorized solution
P(x, t ) = 1

φ(t ) F ( x
φ(t ) ). This approach enables us to use the

method of separating variables, where φ(t ) satisfies a time-
fractional equation. By inserting Eq. (4) into Eq. (13), we find
that (also see Appendix C)

−φν(s)(s)

D(s)

∂ξ (s)φ(s)

∂sξ (s)
=

(
d

dz
[zF ]

)−1 d2

dz2
F ν(s), (14)

where we make the change of variables (x, t ) → (z ≡
x

φ(t ) , s ≡ t ). To simplify the calculations, we assume that the
function q(s) is a slow-varying function so that the derivatives

024310-3



YAOYUE TANG et al. PHYSICAL REVIEW E 109, 024310 (2024)

of q(s) with respect to s can be neglected as a first-order
approximation. Thus, the right-hand side is a sole function of
z, while the left-hand side is a sole function of s. Then we find

φν(s)(s)

D(s)

∂ξ (s)φ(s)

∂sξ (s)
= k (I)

(
d

dz
[zF ]

)−1 d2

dz2
F ν(s) = −k (II) (15)

where k is a real number, which serves as a free parame-
ter. Using the properties of VO-K derivative (K stands for
Katugampola, see Appendix C) we find that

∂ξ (s)φ(s)

∂sξ (s)
= 1

sξ (s)−1
φ′(s), (16)

where (here and throughout of the paper) f ′(s) shows the first
derivative of f (s) with respect to the argument s. Therefore,
Eq. (15 (I)) leads to

φν(s)(s)φ′(s) = kD(s)sξ (s)−1. (17)

To solve this equation, taking a similar approach from
Eq. (6), we assume

φ(s) = φ0s1/α̃(s), (18)

where α̃(s) is a slow VO exponent, and φ0 is a constant.
Note that, in the constant order case α̃(s) is identical to α.
Substituting this into Eq. (17) we find (qs ≡ q(s), νs ≡ ν(s),
ξs ≡ ξ (s), α̃s ≡ α̃(s), and Ds ≡ D(s))

φ
νs+1
0 s

νs+1
α̃s

d

ds

(
ln s

α̃s

)
= kDss

ξs−1, (19)

or in terms of a new variable y ≡ (νs + 1) ln s
α̃(s) (so that ey =

( φ(s)
φ0

)νs+1) we have

(νs + 1)ey d

ds

(
y

νs + 1

)
= kD̃ss

ξs−1, (20)

where

D̃s ≡ (νs + 1)

φ
νs+1
0

Ds. (21)

When νs is a smooth function of s, by considering that νs =
2 − qs, we can ignore its first derivative, so one can easily cast
the equation to the form

d

ds
ey = kD̃ss

ξs−1, (22)

and the solution with initial condition y0 ≡ y(s0) is

ey = ey0 + kG(s, s0). (23)

In Eq. (23) we define

G(s, s0) ≡
∫ s

s0

D̃t t
ξt −1dt ≡

∫ s

s0

g(t )dt, (24)

where

g(t ) ≡ Dt (νt + 1)

φ
νt +1
0

t ξt −1. (25)

Equation (23) can be written in the following form

φ(s) = φ0[k1 + kG(s, s0)]
1

νs+1 , (26)

where k1 ≡ ( φ(s0 )
φ0

)νs0 +1. Note that for the solution to be real,
we should always have the condition

G(s, s0) � −k1

k
. (27)

By choosing

k > 0, (28)

we see that this condition is satisfied given that k1 � 0. Note
k1 is a location parameter, and it is related to the initial condi-
tion, i.e., it sets the initial width of the PDF. When k1 = 0,
the PDF is initially the Dirac δ function, and the solution
of the equation will correspond to the Green function. In
applications where the initial condition is not given, we can set
k1 to zero. The constant k is a scale parameter so that without
loss of generality we can set k = 1. Equations (18) and (26)
the exponent α̃(s) is obtained as

1

α̃s
= ln [k1 + kG(s, s0)]

(νs + 1) ln s
. (29)

The initial time s0 can be set to zero. One can easily demon-
strate that, when considering fractional constant exponents,
νs = ν, ξs = ξ , Eq. (26) coincides with the result of ordinary
PME, that is

α̃s → α, φ(s) → φss(s), (30)

which is given in Eq. (11). Specifically, in the limit Ds → D =
const., νs → 1, ξs → 1 and k1 = 0, one retrieves the normal
diffusion (ND), for which

φ(s) → φ
(ND)
SS ≡ asαND , α̃s → αND = 1

2 , (31)

where a = k
√

2D.
In the next step, we find the solution of F . From now on we

set k = 1 and k1 = 0, bearing in mind that the formulas can be
generalized by considering other values of these parameters.
We recall Eq. (15 (II)),

d

dz
[zF ] = − d2

dz2
F νs . (32)

Let us consider the following trial special solution as a
standard form

F (z, s) = (c + ηsz
2)

1
νs−1

, (33)

where c is a constant, and ηs is a pure function of s to be
determined. Before going into the details, let us comment on
the real-positivity of this solution. To guarantee this, one has
to impose

c + ηsz
2 � 0. (34)

This inequality is satisfied, for any value of z, only when

ηs � 0, (35)

and at the same time c � 0, which we arbitrarily set it to
c = 1 (which can be done using a normalization). For the trial
solution Eq. (33), one has

d

dz
[F νs ] = 2νsηs

νs − 1
zF. (36)
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After incorporating this expression into Eq. (32), we obtain

ηs = 1 − νs

2νs
, (37)

which completes the solution. After all, the Eq. (35) has to be
satisfied, for which we should satisfy the following inequality:

qs − 1

2 − qs
� 0. (38)

Noting that

qs − 1

2 − qs

{
� 0 if 1 � qs < 2,

< 0 if qs < 1 or qs > 2,
(39)

we find a physically relevant interval where the Eq. (34) is
fulfilled: 1 � q < 2. Outside of this range, the solutions be-
come imaginary. Finding another set of solutions is beyond
the scope of the present paper as the study cases of price return
in the stock market are restricted to the interval 1 < q � 2;
therefore, the lower branch in Eq. (39) is applicable. Note that
for k 
= 1 we should satisfy qs−1

k(2−qs ) � 0, which is automati-
cally satisfied for 1 � q < 2 given the Eq. (28).

Altogether, we realize that F (z) and φ(t ) are positive func-
tions, and eventually

P(x, t ) ∝ Aq(t )

φ(t )

[
1 + ηt

(
x

φ(t )

)2
] 1

νt −1

, (40)

where Aq(t ) is a normalization factor (independent of x). Now
defining ηqt = ηt

qt −1 = 1
2(2−qt ) , we find that

P( x, t |x0, t0) = Aq (t )
φ(t ) eqt

[
−ηqt

(
x

φ(t )

)2
]
,

where eq(x) is given in Eq. (9). To make the notation more
compact, we define

�(t ) ≡ φ(t )√
ηqt

, (41)

which gives

P(x, t ) = 1

Cqt �(t )
eqt

[
−

(
x

�(t )

)2
]
, (42)

where Cqt = √
ηqt A

−1
q (t ) is the new normalization factor,

given in Eq. (10) with respect to VO parameter qt . For the
most applications 1 < qt < 3, leading to [see Eq. (10)]

Cqt =
√

π	
(

3−qt

2(qt −1)

)
√

(qt − 1)	
(

1
qt −1

) . (43)

�(t ) is an important function that gives the timescaling
properties of the model. Using Eq. (26) we find the explicit
form

�(t ) = φ0

√
2(2 − qt )

(∫ t

t0

g(s)ds

) 1
3−qt

. (44)

For example, the standard deviation is√
〈x2〉 = �(t ). (45)

If we represent

�(t ) ≡ �0t
1
αt , (46)

which defines the new exponent α(t ), then using Eq. (18) one
finds

t1/α̃t

√
ηqt

= Ct1/αt → 1

αt
ln t = 1

α̃t
ln t − 1

2
ln

(
ηqt

) − ln C,

(47)

where C ≡ �0
φ0

. Using Eq. (47), we can calculate αt if α̃t and
ηt are provided and vice versa. In the practical situations,
one calculates αt using Eq. (46), and the α̃t can be obtained
from Eq. (47). A similar formulation for the case with drift is
presented in Appendix D.

In the rest of this section, we provide some results for the
VO q-Gaussians for various functions q(t ), ξ (t ), and D(t ).
Figure 1 displays the behavior of Eq. (40) and compares
it with the solutions of normal diffusion and porous media
processes, respectively. Figure 1(a) shows the solution of the
diffusion equation or Fick’s second law, i.e., Eq. (7) for q = 1
and ξ = 1 with D = 0.3, in Figs. 1(b) and 1(c) we can observe
q = 1 and � = √

4Dt , respectively. Figure 1(d) exhibits the
solution of P(x, t ) with respect to time and space for a PME,
see Eq. (7), applicable for 1 < q < 3. For this example we
use the values of q = 1.5, ξ = 3/4, and D = 0.3 in Figs. 1(e)
and 1(f) we can observe that q = 1.5, remains constant, and
� = (Dt )1/α with α = 3−q

ξ
respectively. Finally, Fig. 1(g)

represents the VO q-Gaussian presented in Eq. (40) and appli-
cable for 1 < q � 2 with k = 1, k1 = 0, q0 = 1.7, ξ0 = 1.3,
and D0 = 1.3. The value of q(t ) = (q0 − 1)e−at + 1, with
a = 0.0003, and �(t ), see Eq. (44), are shown in Figs. 1(h)
and 1(i), respectively.

IV. APPLICATION TO STOCK
MARKETS AND CRYPTOCURRENCY

In this section, we apply the VO q-Gaussian diffusion
model to describe the evolution of PDF of stock market price
return. Our empirical investigation focuses on two prominent
market indices: the S&P500 stock market index and the Bit-
coin cryptocurrency. The S&P500 dataset encompasses the
period from January 2, 2018, to August 9, 2022, per minute.
For the Bitcoin currency, we analyze data spanning from
January 1, 2021, to May 9, 2022, with data points collected at
10-min intervals. Prior to conducting our price return analysis,
we undertake a preprocessing step to remove time frames
characterized by trading amounts falling below 0.10 USD.
These instances predominantly occur approximately one hour
before the stock market closes, specifically observed in the
context of the S&P500.

The price return is defined as [30]

X (t ) = I (t0 + t ) − I (t0), (48)

where I (t ) is the index at time t , and t0 is some reference time.
By decomposing the price return X (t ) into a deterministic
component X̄ (t ) and a stationary fluctuating component x(t ),
we have

X (t ) = X̄ (t ) + x(t ). (49)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. Summary of PMEs’ solutions. (a) Time evolution of the diffusion equation or Fick’s second law is described by q = 1 and � =√
4Dt presented in panels (b) and (c), respectively. (d) Time evolution of P(x, t ) with respect to time and space for the PME presented in Eq. (7)

for q = 1.50 and � = (Dt )1/α shown in panels (e) and (f), respectively. (g) Time evolution of VO q-Gaussian for a q(t ) = (q0 − 1)e−at + 1
with a = 0.0003 and q0 = 1.7, in panel (h). Panel (i) displays the variation of �(t ) according to Eq. (44).

The trend X̄ (t ) was obtained by calculating the moving
average of the index over a specific time window, tw in the
S&P500 and Bitcoin datasets, following the methodology
described in Ref. [39]. For the S&P500 price return, a three-
month optimal time window was used, while a one-week
optimal time window was employed for the Bitcoin dataset.
These specific time windows were carefully chosen to en-
sure that the fluctuations around the trend show stationary

behavior. To confirm the validity of the observed stationary
behavior, we experimented with different window sizes for de-
trending and ultimately selected the one that allowed the PDF
to show the closest convergence to a Gaussian distribution for
large times. The PDFs were calculated for x(t ) of S&P500
and Bitcoin at the time range t ∈ [1, 47 000] min. By an
error-minimization process, we found that the VO q-Gaussian
diffusion described in Eq. (42) provides the closest match to
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FIG. 2. Results of fitting VO q-Gaussian to the PDFs for S&P500 and Bitcoin. The vertical dashed line indicates the point from where
�(t ) and the peak of the PDFs oscillate around a constant value. (a) Fitting parameter q(t ) for S&P500, which presents a constant of 1.5
initially and slowly converges to 1. (b) Fitting parameter �(t ) for S&P500, with a slope of 1/α = 0.538. (c) The peak of the PDFs [Pmax(t )]
for S&P500 with a slope of −0.532. (d) Fitting parameter q(t ) for Bitcoin, initially at 1.5 and converges to 1 faster than S&P500. (e) Fitting
parameter �(t ) for Bitcoin, with a slope of 1/α = 0.598. (f) The peak of PDF [Pmax(t )] for Bitcoin with a slope of −0.512.

the observed time-dependent evolution of the PDF P(x, t ) for
both S&P500 and Bitcoin.

Figure 2 presents the results of the calibration process,
displaying the functions q(t ), �(t ), and Pmax(t ) obtained by
curve fitting the PDFs derived from the datasets to Eq. (42).
We observed that the PDFs of S&P500 and Bitcoin converge
to a Gaussian distribution function as time t increases, and this
convergence is positively correlated with the chosen optimal
time window tw. Figures 2(a) and 2(d) present the converge of
q towards 1 as t approaches tw, indicating a Gaussian distribu-
tion function with σ 2 = 1/2, and μ = 0. The convergence to
the normal distribution is expected given the fact that for large
enough times, the conditions for the central limit theorem are
satisfied. We observe also that q(t ) for S&P500 and Bitcoin
can be effectively modeled using the following relationship:

q(t ) = (q0 − 1)

(
1 − 1

π
arctan(at )

)
+ 1,

where q0 represents the initial value of q at t0 and a is a
parameter obtained through fitting. The fitting parameters for
the S&P500 are q0 = 1.414 and a = 1.28 × 10−4, while for
Bitcoin, the fitted values are q0 = 1.514 and a = 2.0 × 10−3.
The black curves in Figs. 2(a) and 2(d) represent the re-
sults of this fitting process. It is notable that the Bitcoin
time series exhibits a closer fit to this relationship com-
pared to the S&P500 time series. Specifically, for S&P500,
the fitted values of q(t ) remain constant q(t ) = 1.4 for ap-
proximately the first three days of trading, followed by a
rapid convergence to q(t ) = 1. Conversely, for Bitcoin, the
transition takes place over a shorter duration of around 16
hours, with q(t ) stabilizing at q(t ) = 1 for larger values of
t . These findings highlight the varying dynamics and char-
acteristics between the S&P500 and Bitcoin markets, with
Bitcoin demonstrating a more pronounced adherence to the
modeled relationship for q(t ). Figures 2(b) and 2(e) present
the parameter �(t ) obtained from the q-Gaussian fitting for
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FIG. 3. (a) �(t ) calculated for both S&P500 and Bitcoin price return based on the second moment, both present clear slopes. (b) 1/α(t )
calculated as the localized slope of �(t ). Both S&P500 and Bitcoin present a convergence to 0.5, yet at a different pace. S&P500 converges to
0.5 faster than Bitcoin. (c) 1/α̃(t ) calculated following Eq. (47) for S&P500 and Bitcoin. (d) Parameter Dtt ξt −1 calculated for both time series
based on the relationship in Eq. (25).

S&P500 and Bitcoin, respectively. �(t ) showcases a dis-
tinct slope and remains constant at large times. These slopes
correspond to the anomalous diffusion, where �(t ) ∝ t1/α(t )

[Eq. (6)]. The average slopes obtained for S&P500 and Bit-
coin are 1/α = 0.54 and 1/α = 0.60, respectively, while the
local slopes depend on time. Moreover, as time t increases,
a constant value for �(t ) becomes evident. This behavior is
a consequence of the detrending process applied during the
analysis.

An important feature of the VO diffusion is that the anoma-
lous diffusion cannot be always derived from the temporal
evolution of the peak of the PDF, it has been done in previ-
ous analyses of the S&P500 index [8,60]. Figures 2(c) and
2(f) show the height of the PDF of price return [Pmax(t )] for
S&P500 and Bitcoin, respectively. This term is obtained as
the value of the PDF at x = 0. For both stock markets, Pmax(t )
exhibits a slope initially and remains constant over a large
time. A linear fitting is conducted and the slopes obtained are
−0.532 and −0.512 for S&P500 and Bitcoin, respectively.
This slope is consistent with the anomalous diffusion expo-
nents for the S&P500 but not in the Bitcoin data. As in the
case of Bitcoin, the exponent obtained from �(t ) is α = 1.672
and does not correspond to the exponent 1.953 obtained from
Pmax. This apparent discrepancy can be understood in the light
of Eq. (42). There one can derive the relationship Pmax(x =
0, t ) = 1

Cqt �(t ) , where Cqt is a time-dependent parameter as-
sociated with q as shown in Eq. (43). It is noteworthy that
the absolute value of the slopes in �(t ) and Pmax(t ) shows a
better agreement for S&P500 than for Bitcoin. This disparity
can be attributed to the distinction in the time-dependent term

q(t ) for both markets. In the case of S&P500, the value of
q(t ) remains approximately constant for a longer period than
for Bitcoin. As a result, Cqt closely approximates a constant
value, leading to a relationship of Pmax(t ) ∝ 1/�(t ), which
aligns with the results. Whilst for Bitcoin, where q(t ) varies
with time, the effect of Cqt becomes more significant. We
now realize that neither Pmax(t ) nor �(t ) obtained from curve
fitting are reliable methods to derive the exponent of the
anomalous diffusion in VO diffusion processes. In fact, the
function �(t ) obtained in Figs. 2(b) and 2(e) present �(t )
calculated as a fitting parameter of the PDF to the q-Gaussian
distribution. The results of �(t ) shown have some fluctuations
and the fitting of the slope is not perfect. These fluctuations
and deviations arise due to errors in the fitting process, as
fitting to the q-Gaussian distribution may not always be per-
fect. Therefore, to get rid of systematic fluctuations it is more
reliable to use the variance formula [Eq. (45)] to estimate �(t )
and the associated exponent αt as we do in the rest of this
section.

The power-law relation obtained using Eq. (45) is pre-
sented in Fig. 3(a). An adjustment was performed on the
time series of both S&P500 and Bitcoin by rescaling the
price return using the data frequency (T ). Specifically, for
the S&P500, T = 1 min, while for Bitcoin, T = 10 min. The
slopes of �(t ) were computed for both S&P500 and Bitcoin.
The results reveal that �(t ) for S&P500 price return has a
slope of 0.50(4), whereas for Bitcoin, the slope of 0.47(3).
This shows that the slope of �(t ) is related to the type of
diffusion process. However, these exponents are the averaged
ones over time, and the local slopes show different behaviors,
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i.e., they change over time which needs a “variable-order”
analysis.

We calculate the local slope of �(t ) to determine 1/αt

based on the aforementioned relation in Eq. (46), and the
results are shown in Fig. 3(b). The light-blue curve is the
local slope of S&P500, indicating superdiffusion at small
timescales (t) with 1/α(t ) > 0.5, transitioning towards nor-
mal diffusion at large t with 1/α(t ) → 0.5. However, the
dark blue curve in Fig. 3(b) represents the local slope of the
Bitcoin time series, displaying subdiffusion at small times
t with 1/α(t ) < 0.5, and gradually converging towards nor-
mal diffusion. Upon comparing the two curves, we observe
that the S&P500 slope exhibits a slow decrease in 1/α at
small t , while for Bitcoin, it remains relatively constant at
approximately 0.46. As time progresses, the S&P500 local
slope converges to 0.5 faster than Bitcoin, indicating a quicker
convergence to Gaussian diffusion. In contrast, the local slope
of Bitcoin fluctuates between 0.46 and 0.5, gradually converg-
ing to normal diffusion over an extended time period. The
difference in the rate of convergence to a normal diffusion
process between the S&P500 and Bitcoin [Fig. 3(b)] can
be attributed to several key factors. First, the high volatility
of Bitcoin contributes to its distinct diffusion characteristics.
Additionally, the high decentralization of Bitcoin allows it to
be influenced by investor sentiment, which further impacts its
diffusion dynamics. Last, the regulatory framework surround-
ing cryptocurrency, or rather its absence within traditional
regulatory frameworks, adds to the unique behavior observed
in Bitcoin.

A numerical estimation of the value of 1/α̃t was made
using Eq. (47), which is shown in Fig. 3(c). Using this
function, one is able to calculate G(t, t0) using and 29, and
g(t ) as its time drivative [Eq. (24)]. Here we applied an ap-
proximation in the derivative to the Bitcoin time series to
eliminate the negative values. As the final step, we are able
to estimate the variable-order exponents using the relation in
Eq. (24). More precisely, the parameter Dtt ξt −1 is calculated
for both time series and plotted in Fig. 3(d). Apart from
the stochastic fluctuations, we observe that this parameter
decreases with time in the small time regime, showing that
the diffusion process becomes slower over time as becomes
constant for a time period. The decrease of the diffusion co-
efficient with time is consistent with previous analysis of the
S&P500 data [30]. Note that the PDF of the detrended data
becomes constant when the time reaches the detrended time
window. Thus, the diffusion coefficient should also become
zero when the time reaches the time windows used to detrend
the time series. The explanation of this trend of the diffusion
coefficient is elusive, but there is no reason to expect that
the diffusion coefficient remains constant in VO diffusion
processes.

V. DISCUSSION

We have proposed a variable-order differential equation to
describe nonlinear fractional diffusion processes with anoma-
lous diffusion, applicable for the regime 1 � q < 2. In the
variable-order equation, the analytical solution is self-similar
in the broad sense, with x ∼ φ(t ) as the scaling variable,
which is given in terms of the q-Gaussian distribution. In

the constant-order equation, the scaling variable reduces to
x ∼ tH , where H = 1/α is the Hurst exponent and α defines
whether the diffusion process is either normal or super/sub
diffusive. The variable-order exponents α(t ) and q(t ) are
related to time correlations and nonlinear diffusion. The time-
dependency of the exponents allows them to comply with
the Central Limit Theorem, which requires α(t ) → 2 and
q(t ) → 1 as t → ∞. Typically, alpha is related to the Hurst
exponent (H = 1/α) of the time series associated with the
diffusion process. This can be discussed in light of the fBm,
which is a self-similar Gaussian stochastic process charac-
terized by stationary power-law correlated increments. In
the fBm, the Hurst exponent provides a crucial link be-
tween the diffusion coefficient α through the relation H =
1/α [9]. This exponent measures the long-range memory in
time series data and can also be associated with autocor-
relation patterns. Specifically, for 0 < H < 0.5 (or α > 2)
the time series exhibits anti-correlated behavior. In the case
of H = 0.5 (or α = 2), the time series is uncorrelated. Fi-
nally, for 0.5 < H < 1 (or α < 2), the time series displays
positively correlated behavior [61]. Moreover, in positive
long-range correlated series, the autocorrelation function fol-
lows a power-decay pattern described by C(s) ∼ s−γ where
γ = 2 − 2H [61].

The dynamics of the market ecosystem suggest that
traders’ behavior can influence autocorrelation patterns. In
the stock market, traders employ various strategies, includ-
ing positive feedback traders where they buy after price
increases and sell when prices decline, and negative traders
who follow the ’buy-low sell-high approach [62]. Sentana and
Wadhwani [63] explored the connection between volatility,
returns autocorrelation, and trading strategies using a GARCH
model. They conducted empirical investigations using the
Dow Jones index data and discovered that positive traders
can lead to negative autocorrelation, while negative traders
can result in positive autocorrelation. Furthermore, they found
that in an index comprising numerous securities with different
trading frequencies, positive cross-autocorrelation emerges,
contributing to positive autocorrelation within the index. This
finding aligns with our study, specifically in the context of the
S&P500 market index.

In our analysis, the variable-order exponents are observed
in both stock markets and cryptocurrencies. In the S&P500
market α(t ) < 2 while gently increasing to the value α(t ) = 2
for large times. This behavior is consistent with the ecol-
ogy of this market, consisting of short to moderate-time
investors that lead to short-time correlations. The behav-
ior is different in the Bitcoin index where α(t ) oscillates
slightly above 2, indicating anticorrelation in the time series.
This behavior is consistent with the peculiar ecology of the
cryptocurrencies mainly dominated by speculators who are
frequently changing their strategy to maximize utilities. For
large times, the time series of price returns become uncorre-
lated, leading to the expectation that α converges to 2 in this
limit.

The underlining mechanism of the values of the exponent
q(t ) may be attributed to the interaction between the equities
of the stock market. This can be understood from the
Langevin equation of the nonlinear FPE [Eq. (7)] that
is converted by using the property of the Katugampola

024310-9



YAOYUE TANG et al. PHYSICAL REVIEW E 109, 024310 (2024)

derivative dξ /dt ξ = t1−ξ d/dt to [64]

∂P(x, t )

∂t
= Dt ξ−1 ∂2P(x, t )2−q

∂x2
. (50)

The corresponding Langevin equation describing the
stochastic dynamics of the price return X (t ) has been derived
by Bourland [65],

X (t + dt ) = X (t ) + η(t )(Dt1−ξ P(X (t ), t )1−q )1/2dt, (51)

where η(t ) is the white noise signal. Let us consider the case
of an idealized gas of particles experiencing Brownian-like
motion. For q = 1 and ξ = 1 the stochastic dynamic corre-
sponds to the classical random walk that describes ideal gases.
For more dense situations, q may take values larger than zero,
indicating that the random walk of each particle is influenced
by the local density of the particles around its location. This
physical picture can be extrapolated to financial markets as
follows: Assuming that X (t ) is the index of a particular stock,
the dependency of the fluctuations on its probability density
functions may be attributed to the interaction between differ-
ent equities in the stock market. In fact, the S&P500 index is
calculated based on the 500 largest companies in the US, and
it should be noted that the performance of these companies
cannot be assumed to be independent. The exponent q ≈ 1.4
is observed for price returns calculated within t = 103 min
(roughly 3 days). For larger times q converges to 2 since the
CLT requires the PDF of the price return to converge to a
Gaussian distribution when t → ∞. In the case of Bitcoin, the
exponent q is larger (q ≈ 1.5) and it converges to q = 2 faster
(in the order of hours), which may be directly related to the
transaction between different crypto-currencies. In both cases,
the CLT is guaranteed since the standard deviation of the
q-Gaussian distribution is finite for q < 5/3. Further investi-
gation of these peculiar dynamic features from microscopic
models such as agent-based models or order book models
would provide some light on the underlines mechanism of the
time evolution of these exponents.
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APPENDIX A: DIMENSIONAL ANALYSIS

In this Appendix, we describe the scaling properties of
the PDFs. From the dimensional analysis of the normality
condition, one realizes that the dimension of any PDF P(x) is
[P(x)] = [x]−d , where [Q] shows the space dimension of the
quantity Q. To see this more explicitly, we apply the scaling
transformation x → y ≡ λx, and using the conservation of
probability P(x)dd x = P(y)dd y, one finds

P(λx) = λ−d P(x). (A1)

For a stochastic process, where P changes with time, we
use the root-mean-displacement relation r ≡ |x|

〈r2〉 ∝ φ(t )2 (A2)

to predict the form of the PDF, where φ(t ) is a function of time
the form of which determines the anomalous diffusion nature.
In this case, Eq. (A1) generalizes to

P(λx, λφ(t )) = λ−d P(x, φ(t )), (A3)

which is realized using the normality condition∫ ∞

−∞
P(x, φ(t ))dd x = λd

∫ ∞

−∞
P(λx, λφ(t ))dd x = 1

→ P(λx, λφ(t )) = λ−d P(x, φ(t )).

(A4)

A solution of this equation is a factorized form as follows:

P(x, t ) = 1

φ(t )d
F [φ(t )−1x], (A5)

where the function F is a well-behaved one to be determined
using the governing equation. Note that F is invariant under
x → λx, φ(t ) → λφ(t ), and also

〈r2〉 =
∫

dd xr2F
[

x
φ(t )

]
∫

dd xF
[

x
φ(t )

] =
[∫

dd z|z|2F [z]∫
dd zF [z]

]
φ(t )2, (A6)

where z ≡ x
φ(t ) . The scaling properties of the time series are

associated with the form of φ(t ). In fact, for the solution of
the Eq. (7) we have φ(t ) = φSS(t ) where the index “SS” points
out the self-similarity law, given by [8,9]

φSS(t ) ∝ t1/α ≡ t−H , (A7)

where α is a self-similarity exponent, and H is the Hurst
exponent. Combining Eqs. (5) and (A7), one reaches Eq. (1).

APPENDIX B: RELATIONSHIP BETWEEN FBM, TIME
FRACTIONAL FPE, AND SDE

This short Appendix is devoted to some scaling properties
of the fBm, especially by focusing on its Langevin equa-
tion, and the corresponding FPE. Our primary objective is to
explore the relationship between time-fractional generalized
Lagevine and FPE equations for fBm. This example sheds
light on the essential difference between the driving processes
of Brownian motion (Bm) as an example of semi-martingales
and fBm as a representative of non-semi-martingales. The
complexity of the latter case arises mainly from the presence
of correlations, resulting in sub- or superdiffusion. This also
shows the consequences of the presence of nonlocal effects
[9].

The classical FPE establishes a relationship between the
stochastic differential equation (SDE) driven by Bm and
its associated partial differential equation. The fBm BH :=
{BH (t ), t � 0} is a family of stochastic processes indexed by
the Hurst index H ∈ (0, 1). For each H , the process BH is
defined as a weighted moving average of a Bm process

BH (t ) =
∫ t

0
(t − τ )H−1/2dB(τ ), (B1)
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where B := {B(t ), t � 0} is a Bm and H is the Hurst pa-
rameter. The fBm with variance σ (t ) is the solution of the
following fractional SDE [66]:

dξ X

dt ξ
= σ (t )η(t ), (B2)

where η(t ) = dB/dt is the normalized white noise, 1/2 <

ξ = H + 1/2 � 1.5 and dξ /dt ξ is the Riemann–Liouville
fractional operator that is defined as

dξ f

dt ξ
= 1

	(ξ )

∫ t

0
(t − τ )ξ−1 f (τ )dτ . (B3)

Further, the fractional FPE of the fBm process is given by [66]

d2H PX (x, t )

dt2H
= 	(2H )

2	2(H + 1/2)
σ (t )

∂2PX (x, t )

∂x2
. (B4)

There are two main differences between the fBm and the
fractional q-Gaussian process investigated in this paper. First,
the FPE of the fBm is linear and its solution is expressed in
terms of Gaussian distribution, while the latter is nonlinear
and the solution is given in terms of the q-Gaussian distribu-
tion. Second, the fractional FPE of the fBm involves nonlocal
fractional derivatives while the fractional q-Gaussian process
involves local (Katugampola) fractional operators. Yet in both
cases, one can recover the Bm by either taking H = 1/2 in
the fBm or q = 1 and α = 1 in the fractional q-Gaussian
diffusion.

However, discussing the relationship between the frac-
tional FPE (or the governing equation) and the SDE of their
associated time series are equivalent to discussing the relation
between the autocorrelation of the time series and the frac-
tionalization scheme in the governing equation. The key point
is the scaling properties of the governing equation describing
a self-similar time series. If {X (t )}t∈Z denotes a self-similar
time series with the property√

〈X 2〉 ∝ tH , (B5)

then the corresponding governing equation should have the
same symmetry. It means the invariance of the PDF (of the
governing equation) up to a scaling factor, i.e.,

P(X, t ) = t−H F (X/tH ), (B6)

where F is a function to be fixed by the governing equation.
Fractional Brownian motions are described by Eq. (B6) when
F is an exponential function

P(X, t ) ∝ t−H exp

[
−1

2

(
X

tH

)2
]
. (B7)

In fact, the governing equation for a self-similar time series
should include fractional operators, or one should use a space-
or time-dependent diffusion coefficient with power-law de-
pendence. The symmetry of the system can easily be found
in the corresponding PDF of the time series, and also by
calculating the second moment of X , which X denotes a self-
similar time series. This means the fractionalization exponent
is manifest in the PDF.

Consider a general H-self-similar time series {X (t )}t∈Z
defined by the relation {X (ct )}t∈Z ≡ {cH X (t )}t∈Z, where
c > 0, and H is the Hurst exponent. If this process has

stationary increments Yn = X (n) − X (n − 1), then the auto-
correlation γY (k) ≡ 〈YkY0〉 − 〈Yk〉〈Y0〉 behaves like k2d−1 as
k → ∞, where d = H − 1

2 , and 0 < d < 1/2, ensuring that∑∞
k=−∞ γY (k) = ∞. From a spectral domain perspective, the

spectral density of {Yn} behaves as ω−2d as the frequency ω →
0. This relates self-similar time series with fractionalization
which is applied to the price return time series which becomes
stationary by normalizing the detrended data set [see Eq. (48)]
[9]. Let us consider the special case �(t ) ∼ t1/αt in Eq. (45).
Following these facts, we suggest a relation between the Hurst
exponent Ht = 1/αt given in Eq. (13), with a self-similar
function Eq. (42) for the VO-nonlinear case.

APPENDIX C: SOME DETAILS
OF VO CALCULATIONS FOR PME

In this Appendix, we introduce and inspect a VO extension
of the Katugampola fractional operator, denoted as VO-K
in this paper. We outline the definition of this operator and
discuss some of its key properties. For a more comprehensive
understanding of the Katugampola fractional operator and its
underlying principles, we recommend referring to Ref. [64].

A VO-K fractional operator, which is used to construct the
VO-PME in Sec. III is defined as

Dα(t ) f (t ) = lim
ε→0

f (teεt−α(t )
) − f (t )

ε
, (C1)

for t > 0 and α(t ) ∈ (0, 1]. If 0 � α(t ) < 1, then the VO-
K operator generalizes the classical calculus properties of
polynomials. Furthermore, if α(t ) = 1, then the definition is
equivalent to the classical definition of the first-order deriva-
tive of the function f . When α(t ) ∈ (n, n + 1] (for some n ∈
N, and f is an n-differentiable at t > 0), the above definition
generalizes to

Dα(t ) f (t ) = lim
ε→0

f (n)(teεxn−α(t )
) − f (n)(t )

ε
.

If f is (n + 1)-differentiable at t > 0, then we have

Dα(t ) f (t ) = t n+1−α(t ) f (n+1)(t ). (C2)

The properties of the VO-K derivatives are a simple extension
of the ordinary derivatives

Dα(t )[a f + bg] = aDα(t )( f ) + bDα(t )(g), ∀a, b ∈ R,

Dα(t )[C] = 0, C ∈ R,

Dα(t )[ f g] = fDα(t )(g) + gDα(t )( f ),

Dα(t )[ f /g] = gDα(t )( f ) − fDα(t )(g)

g2
,

Dα(t )( f og)(t ) = f ′(g(t ))Dα(t )g(t ),

where f og(t ) ≡ f (g(t )). The proof of the properties of the
variable-order Katugampola fractional operator (VO-K) is
analogous to the proof presented in Ref. [64]. In our case, we
replace the constant order parameter α with the variable-order
parameter α(t ).

Throughout this paper, the notations Dα(t ) and ∂α(t )

∂tα(t ) are
used with the same meaning. The fractional Katugampola
calculations for the VO-PME are performed, as shown in
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Sec. III, between Eqs. (4) and (13). Applying the properties
of the VO-K derivative, we get

∂ξ (t )

∂t ξ (t )

(
1

φ(t )
F

(
x

φ(t )

))

= F

(
x

φ(t )

)(−Dξ (t )φ(t )

φ2(t )

)

+ 1

φ(t )

(
F ′

(
x

φ(t )

)
Dξ (t )

(
x

φ(t )

))

= F (z)

(−Dξ (t )φ(t )

φ2(t )

)
+ zF ′(z)

(−Dξ (t )φ(t )

φ2(t )

)

= −Dξ (t )φ(t )

φ2(t )

d

dz
[zF (z)], (C3)

where z = x
φ(t ) . Then, we get the following two equations:

∂2

∂x2
Pν(t )(x, t ) = 1

φν(t )+2

d2

dz2
F ν(t ),

∂ξ (t )P(x, t )

∂t ξ (t )
= −1

φ2(t )

∂ξ (t )φ

∂t ξ (t )

[
F + z

d

dz
F

]
, (C4)

so that

−1

φ2(t )

∂ξ (t )φ

∂t ξ (t )

d

dz
[zF ] = D(t )

φν(t )+2

d2

dz2
F ν(t ). (C5)

APPENDIX D: THE LOCAL VO FRACTIONAL
NONLINEAR TIME DIFFUSION EQUATION WITH DRIFT

The drift is often an inevitable part of stochastic systems
that should be analyzed in detail for every case study to
control its effects. Although it is suggested to define the
equations for the general drift term. For the case where it
depends only on time (as is the case for many physical systems
of interest), the situation becomes easier. In this case, the

governing equation is

∂ξ (t )

∂t ξ (t )
P(x, t ) = −a(t )

∂P(x, t )

∂x
+ D(t )

∂2Pν(t )(x, t )

∂x2
. (D1)

Through a change of variable τ = t ξ (t ) and VO-K fractional
derivative, provided h(t ) = ξ (t ) ln t has an inverse function,
we have

∂τ P(x, t ) = −a1(τ )∂xP(x, t ) + D1(τ )∂2
x Pν1(τ )(x, t ),

where a1(τ ) = a(t (τ ))(tξ ′(t ) ln t + ξ (t ))−1, D1(τ ) =
D(t (τ ))(tξ ′(t ) ln t + ξ (t ))−1, and ν1(τ ) = ν(t (τ )). By using
the change of variable (s, y) = (τ, x − x0 − f (τ )), where
f (τ ) = ∫ τ

0 a1(τ ′)dτ ′, and using the fact that ∂y
∂τ

= −a1(τ )
and ∂τ + a1(τ )∂x = ∂s, one finds that the governing
equation P(y, τ ) is

∂τ P(y, τ ) = D(τ )∂2
y Pν(τ )(y, τ ),

for which the solution is (x0 ≡ 0 and k ≡ 1 and k1 ≡ 0)

P(y, τ |y0, τ0) = Aq(t )(∫ τ

τ0
g(s)ds

) 1
ν(τ )+1

×
⎛
⎝c + (ν(τ ) − 1)

2ν(τ )

y2(∫ τ

τ0
g(s)ds

) 2
ν(τ )+1

⎞
⎠

1
ν(τ )−1

,

(D2)

where g(s) = D(s)(1 + ν(s)). Let us equate P(y, τ )

P(x, t ) = ∂y

∂x
P(y, τ (t )).

Then, we obtain

P(x, t |0, t0) = Aq(t )(∫ t
t0

g(s)ds
) 1

ν(t )+1

×
⎛
⎝c + (ν(t ) − 1)

2ν(t )

(x − f (t ))2(∫ t
t0

g(s)ds
) 2

ν(t )+1

⎞
⎠

1
ν(t )−1

,

(D3)

where Aq is a normalization factor, and c and k are constant.
The Eq. (D3) is a VO q-Gaussian solution with a drift.
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